Physical Model of the Dispersion of a Radioactive Contaminant in the Atmosphere above a Heat Island

1985 ◽  
pp. 451-456
Author(s):  
J. A. Toly
2019 ◽  
pp. 53-65
Author(s):  
Renata Domingos ◽  
Emeli Guarda ◽  
Elaise Gabriel ◽  
João Sanches

In the last decades, many studies have shown ample evidence that the existence of trees and vegetation around buildings can contribute to reduce the demand for energy by cooling and heating. The use of green areas in the urban environment as an effective strategy in reducing the cooling load of buildings has attracted much attention, though there is a lack of quantitative actions to apply the general idea to a specific building or location. Due to the large-scale construction of high buildings, large amounts of solar radiation are reflected and stored in the canyons of the streets. This causes higher air temperature and surface temperature in city areas compared to the rural environment and, consequently, deteriorates the urban heat island effect. The constant high temperatures lead to more air conditioning demand time, which results in a significant increase in building energy consumption. In general, the shade of the trees reduces the building energy demand for air conditioning, reducing solar radiation on the walls and roofs. The increase of urban green spaces has been extensively accepted as effective in mitigating the effects of heat island and reducing energy use in buildings. However, by influencing temperatures, especially extreme, it is likely that trees also affect human health, an important economic variable of interest. Since human behavior has a major influence on maintaining environmental quality, today's urban problems such as air and water pollution, floods, excessive noise, cause serious damage to the physical and mental health of the population. By minimizing these problems, vegetation (especially trees) is generally known to provide a range of ecosystem services such as rainwater reduction, air pollution mitigation, noise reduction, etc. This study focuses on the functions of temperature regulation, improvement of external thermal comfort and cooling energy reduction, so it aims to evaluate the influence of trees on the energy consumption of a house in the mid-western Brazil, located at latitude 15 ° S, in the center of South America. The methodology adopted was computer simulation, analyzing two scenarios that deal with issues such as the influence of vegetation and tree shade on the energy consumption of a building. In this way, the methodological procedures were divided into three stages: climatic contextualization of the study region; definition of a basic dwelling, of the thermophysical properties; computational simulation for quantification of energy consumption for the four facade orientations. The results show that the façades orientated to north, east and south, without the insertion of arboreal shading, obtained higher values of annual energy consumption. With the adoption of shading, the facades obtained a consumption reduction of around 7,4%. It is concluded that shading vegetation can bring significant climatic contribution to the interior of built environments and, consequently, reduction in energy consumption, promoting improvements in the thermal comfort conditions of users.


Author(s):  
Oleksii Timkov ◽  
Dmytro Yashchenko ◽  
Volodymyr Bosenko

The article deals with the development of a physical model of a car equipped with measuring, recording and remote control equipment for experimental study of car properties. A detailed description of the design of the physical model and of the electronic modules used is given, links to application libraries and the code of the first part of the program for remote control of the model are given. Atmega microcontroller on the Arduino Uno platform was used to manage the model and register the parameters. When moving the car on the memory card saved such parameters as speed, voltage on the motor, current on the motor, the angle of the steered wheel, acceleration along three coordinate axes are recorded. Use of more powerful microcontrollers will allow to expand the list of the registered parameters of movement of the car. It is possible to measure the forces acting on the elements of the car and other parameters. In the future, it is planned to develop a mathematical model of motion of the car and check its adequacy in conducting experimental studies on maneuverability on the physical model. In addition, it is possible to conduct studies of stability and consumption of electrical energy. The physical model allows to quickly change geometric dimensions and mass parameters. In the study of highway trains, this approach will allow to investigate the various layout schemes of highway trains in the short term. It is possible to make two-axle road trains and saddle towed trains, three-way hitched trains of different layout. The results obtained will allow us to improve not only the mathematical model, but also the experimental physical model, and move on to further study the properties of hybrid road trains with an active trailer link. This approach allows to reduce material and time costs when researching the properties of cars and road trains. Keywords: car, physical model, experiment, road trains, sensor, remote control, maneuverability, stability.


Author(s):  
E. M. Solovyov ◽  
V. I. Novikov ◽  
B. V. Spitsyn ◽  
M. R. Kiselev ◽  
V. A. Sorokin ◽  
...  

2020 ◽  
Vol 21 (1) ◽  
pp. 99
Author(s):  
Dewi Miska Indrawati ◽  
Suharyadi Suharyadi ◽  
Prima Widayani

Kota Mataram adalahpusat dan ibukota dari provinsi Nusa Tenggara Barat yang tentunya menjadi pusat semua aktivitas masyarakat disekitar daerah tersebut sehingga menyebabkan peningkatan urbanisasi. Semakin meningkatnya peningkatan urbanisasi yan terjadi di perkotaan akan menyebabkan perubahan penutup lahan, dari awalnya daerah bervegetasi berubah menjadi lahan terbangun. Oleh karena itu, akan memicu peningkatan suhu dan menyebabkan adanya fenomena UHI dikota Mataram.Tujuan dari penelitian ini untuk mengetahui hubungan kerapatan vegetasi dengan kondisi suhu permukaan yang ada diwilayah penelitian dan memetakan fenomena UHI di Kota Mataram. Citra Landsat 8 OLI tahun 2018 yang digunakan terlebih dahulu dikoreksi radiometrik dan geometrik. Metode untuk memperoleh data kerapatan vegetasi menggunakan transformasi NDVI, LST menggunakan metode Split Window Algorithm (SWA) dan identifikasi fenomena urban heat island. Hasil penelitian yang diperoleh menunjukkan kerapatan vegetasi mempunyai korelasi dengan nilai LST. Hasil korelasi dari analisis pearson yang didapatkan antara kerapatan vegetasi terhadap suhu permukaan menghasilkan nilai -0,744. Fenomena UHIterjadi di pusat Kota Mataram dapat dilihat dengan adanya nilai UHI yaitu 0-100C. Semakin besar nilai UHI, semakin tinggi perbedaan LSTnya.


Sign in / Sign up

Export Citation Format

Share Document