The Development of Curved Fracture Toughness Specimens for Predicting Crack Growth in Candu Reactor Pressure Tubes

1985 ◽  
pp. 281-291
Author(s):  
A. C. Wallace
Author(s):  
Bruce W. Williams ◽  
William R. Tyson ◽  
C. Hari M. Simha ◽  
Bogdan Wasiluk

Abstract CSA Standard N285.8 requires leak-before-break and fracture protection for Zr-2.5Nb pressure tubes in operating CANDU reactors. In-service deuterium uptake causes the formation of hydrides, which can result in additional variability and reduction of fracture toughness. Pressure tube fracture toughness is assessed mainly through rising pressure tube section burst tests. Given the length of the ex-service pressure tubes required for burst testing and the requirement to increase the hydrogen content of irradiated ex-service pressure tubes, only a limited number of burst tests can be performed. Using small-scale compact tension, C(T), specimens are advantageous for obtaining a statistically significant number of fracture toughness measurements while using less ex-service pressure tube material. This work focuses on the study of C(T) geometry designs in order to obtain crack growth resistance and fracture toughness closer to those deduced from burst tests. Because C(T) specimens must be machined from pressure tubes of about 100 mm in diameter and 4 mm in wall thickness, they are out-of-plane curved. As well, they undergo significant tunnelling during crack extension. These two factors can result in a violation of the ASTM standard for fracture toughness testing. The current work examined the influence of specimen curvature and tunnelled crack front on the crack growth resistance curve, or J-R curve. Finite element (FE) models using stationary and growing cracks were used in a detailed numerical investigation. To capture crack tunnelling in the FE models, a damage mechanics approach was adopted, with the critical strain to accumulate damage being a function of crack front stress triaxiality. The J-integral numerically estimated from the domain integral approach was compared to the J-integral calculated from the analytical equations in the ASTM E-1820 standard. In most cases, the difference between the numerical and the standard estimations was less than 10%, which was considered acceptable. It was found that at higher load levels of load-line-displacement, specimen curvature influenced the J-integral results. Crack tunnelling was shown to have a small influence on the estimated J-integrals, in comparison with the straight crack fronts. A modest number of experiments were carried out on unirradiated Zr-2.5Nb pressure tube material using three designs of curved C(T) specimens. It was found that the specimens of both designs that featured a width of 34 mm had more than twice the crack extension of the specimens of the 17-mm width design. The 17-mm width specimens are used mainly to assess the small-scale fracture toughness of pressure tube material. Additionally, the applied J-integral at the maximum load was about 1.4 times higher for the larger-width C(T) specimens. These C(T) specimens also produced J-R curves with greater crack extensions, which were closer to those obtained from the pressure tube section burst tests. Artificially hydrided pressure tube material was not considered in the current work, to avoid any potential source of experimental variability; however, it should be considered in future work.


Author(s):  
V. I. Kostylev ◽  
B. Z. Margolin

The main features of shallow cracks fracture are considered, and a brief analysis of methods allowing to predict the temperature dependence of the fracture toughness KJC (T) for specimens with shallow cracks is given. These methods include DA-method, (JQ)-method, (J-T)-method, “local methods” with its multiparameter probabilistic approach, GP method uses power approach, and also two engineering methods – RMSC (Russian Method for Shallow Crack) and EMSC (European Method for Shallow Crack). On the basis of 13 sets of experimental data for national and foreign steels, a detailed verification and comparative analysis of these two engineering methods were carried out on the materials of the VVER and PWR nuclear reactor vessels considering the effect of shallow cracks.


1987 ◽  
Vol 109 (4) ◽  
pp. 314-318 ◽  
Author(s):  
D. F. Watt ◽  
Pamela Nadin ◽  
S. B. Biner

This report details the development of a three-stage fracture toughness testing procedure used to study the effect of tempering temperature on toughness in 01 tool steel. Modified compact tension specimens were used in which the fatigue precracking stage in the ASTM E-399 Procedure was replaced by stable precracking, followed by a slow crack growth. The specimen geometry has been designed to provide a region where slow crack growth can be achieved in brittle materials. Three parameters, load, crack opening displacement, and time have been monitored during the testing procedure and a combination of heat tinting and a compliance equation have been used to identify the position of the crack front. Significant KIC results have been obtained using a modified ASTM fracture toughness equation. An inverse relationship between KIC and hardness has been measured.


2011 ◽  
Vol 78 (4) ◽  
Author(s):  
Susan Mischinski ◽  
Ani Ural

Bone is similar to fiber-reinforced composite materials made up of distinct phases such as osteons (fiber), interstitial bone (matrix), and cement lines (matrix-fiber interface). Microstructural features including osteons and cement lines are considered to play an important role in determining the crack growth behavior in cortical bone. The aim of this study is to elucidate possible mechanisms that affect crack penetration into osteons or deflection into cement lines using fracture mechanics-based finite element modeling. Cohesive finite element simulations were performed on two-dimensional models of a single osteon surrounded by a cement line interface and interstitial bone to determine whether the crack propagated into osteons or deflected into cement lines. The simulations investigated the effect of (i) crack orientation with respect to the loading, (ii) fracture toughness and strength of the cement line, (iii) crack length, and (iv) elastic modulus and fracture properties of the osteon with respect to the interstitial bone. The results of the finite element simulations showed that low cement line strength facilitated crack deflection irrespective of the fracture toughness of the cement line. However, low cement line fracture toughness did not guarantee crack deflection if the cement line had high strength. Long cracks required lower cement line strength and fracture toughness to be deflected into cement lines compared with short cracks. The orientation of the crack affected the crack growth trajectory. Changing the fracture properties of the osteon influenced the crack propagation path whereas varying the elastic modulus of the osteon had almost no effect on crack trajectory. The findings of this study present a computational mechanics approach for evaluating microscale fracture mechanisms in bone and provide additional insight into the role of bone microstructure in controlling the microcrack growth trajectory.


2021 ◽  
Vol 14 (1) ◽  
pp. 34-39
Author(s):  
D. A. Kuzmin ◽  
A. Yu. Kuz’michevskiy

The destruction of equipment metal by a brittle fracture mechanism is a probabilistic event at nuclear power plants (NPP). The calculation for resistance to brittle destruction is performed for NPP equipment exposed to neutron irradiation; for example, for a reactor plant such as a water-water energetic reactor (WWER), this is a reactor pressure vessel. The destruction of the reactor pressure vessel leads to a beyond design-basis accident, therefore, the determination of the probability of brittle destruction is an important task. The research method is probabilistic analysis of brittle destruction, which takes into account statistical data on residual defectiveness of equipment, experimental results of equipment fracture toughness and load for the main operating modes of NPP equipment. Residual defectiveness (a set of remaining defects in the equipment material that were not detected by non-destructive testing methods after manufacturing (operation), control and repair of the detected defects) is the most important characteristic of the equipment material that affects its strength and service life. A missed defect of a considerable size admitted into operation can reduce the bearing capacity and reduce the time of safe operation from the nominal design value down to zero; therefore, any forecast of the structure reliability without taking into account residual defectiveness will be incorrect. The application of the developed method is demonstrated on the example of an NPP reactor pressure vessel with a WWER-1000 reactor unit when using the maximum allowable operating loads, in the absence of load dispersion in different operating modes, and taking into account the actual values of the distributions of fracture toughness and residual defectiveness. The practical significance of the developed method lies in the possibility of obtaining values of the actual probability of destruction of NPP equipment in order to determine the reliability of equipment operation, as well as possible reliability margins for their subsequent optimization.


2021 ◽  
Author(s):  
S. Pothana ◽  
G. Wilkowski ◽  
S. Kalyanam ◽  
J. K. Hong ◽  
C. J. Sallaberry

Abstract A new approach was implemented to confirm the start of ductile tearing relative to assessments by other methods such as direct-current Electric Potential (d-c EP) method in coupon specimens. This approach was developed on the Key-Curve methodology by Ernst/Joyce and is similar to the ASTM E-1820 Load Normalization procedure used to determine J-R curves directly from load versus Load-Line Displacement (LLD) record of the test specimen. It is consistent with Deformation Plasticity relationships for fully plastic behavior. Using this Experimental Key-Curve method, crack initiation can be determined directly from load versus LLD data or load versus Crack-Mouth Opening Displacement (CMOD) obtained from a fracture test without the need for additional instrumentation required for crack initiation detection. It is based on the fact that plastic deformation of homogeneous metals at the crack tip follows a power-law function until the crack tearing initiates. Crack tearing initiation is determined at the point where the power-law fit to the load versus plastic part of CMOD or LLD curve deviates from the total experimental load versus plastic-CMOD or LLD curve. The procedure for fitting of the data requires some care to be exercised such that the fitted data is beyond the elastic region and early small-scale plastic region of the Load-CMOD or Load-LLD curve but include data before crack initiation. An iterative regression analysis was done to achieve this, which is shown in this paper. The iterative fitting in this region typically results with a coefficient of determination (R2) values that are greater than 0.990. This method can be either used in conjunction with other methods such as direct-current Electric Potential (d-c EP) or unloading-compliance methods as a secondary (or primary) confirmation of crack tearing initiation (and even for crack growth); or can be used alone when other methods cannot be used. Furthermore, when using instrumentation methods for determining crack-initiation such as d-c EP method in a fracture toughness test, it is good to have a secondary confirmation of the initiation point in case of instrumentation malfunction or high signal to noise ratio in the measured d-c EP signals. In addition, the Experimental Key-Curve procedure provides relatively smooth data for the fitting procedure, while unloading-compliance data when used to get small crack growth values frequently has significant variability, which is part of the reason that JIC by ASTM E1820 is determined using an offset with some growth past the very start of ductile tearing. In this work, the Experimental Key-Curve method had been successfully used to determine crack tearing initiation and demonstrate the applicability for different fracture toughness specimen geometries such as SEN(T), and C(T) specimens. In all the cases analyzed, the Experimental Key-Curve method gave consistent results that were in good agreement with other crack tearing initiation measuring method such as d-c EP but seemed to result in less scatter.


Sign in / Sign up

Export Citation Format

Share Document