VLA Observations of Sgr A

Author(s):  
W. M. Goss ◽  
U. J. Schwarz ◽  
R. D. Ekers ◽  
J. H. van Gorkom
Keyword(s):  
2019 ◽  
Vol 881 (1) ◽  
pp. 62 ◽  
Author(s):  
Daniel C. M. Palumbo ◽  
Sheperd S. Doeleman ◽  
Michael D. Johnson ◽  
Katherine L. Bouman ◽  
Andrew A. Chael
Keyword(s):  

2016 ◽  
Vol 461 (1) ◽  
pp. 552-559 ◽  
Author(s):  
S. Dibi ◽  
S. Markoff ◽  
R. Belmont ◽  
J. Malzac ◽  
J. Neilsen ◽  
...  
Keyword(s):  
X Ray ◽  

2012 ◽  
Vol 746 (1) ◽  
pp. L10 ◽  
Author(s):  
Joshua C. Dolence ◽  
Charles F. Gammie ◽  
Hotaka Shiokawa ◽  
Scott C. Noble

2020 ◽  
Vol 500 (3) ◽  
pp. 3213-3239
Author(s):  
Mattia Libralato ◽  
Daniel J Lennon ◽  
Andrea Bellini ◽  
Roeland van der Marel ◽  
Simon J Clark ◽  
...  

ABSTRACT The presence of massive stars (MSs) in the region close to the Galactic Centre (GC) poses several questions about their origin. The harsh environment of the GC favours specific formation scenarios, each of which should imprint characteristic kinematic features on the MSs. We present a 2D kinematic analysis of MSs in a GC region surrounding Sgr A* based on high-precision proper motions obtained with the Hubble Space Telescope. Thanks to a careful data reduction, well-measured bright stars in our proper-motion catalogues have errors better than 0.5 mas yr−1. We discuss the absolute motion of the MSs in the field and their motion relative to Sgr A*, the Arches, and the Quintuplet. For the majority of the MSs, we rule out any distance further than 3–4 kpc from Sgr A* using only kinematic arguments. If their membership to the GC is confirmed, most of the isolated MSs are likely not associated with either the Arches or Quintuplet clusters or Sgr A*. Only a few MSs have proper motions, suggesting that they are likely members of the Arches cluster, in agreement with previous spectroscopic results. Line-of-sight radial velocities and distances are required to shed further light on the origin of most of these massive objects. We also present an analysis of other fast-moving objects in the GC region, finding no clear excess of high-velocity escaping stars. We make our astro-photometric catalogues publicly available.


Universe ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 37
Author(s):  
Lorenzo Iorio

Recently, the secular pericentre precession was analytically computed to the second post-Newtonian (2PN) order by the present author with the Gauss equations in terms of the osculating Keplerian orbital elements in order to obtain closer contact with the observations in astronomical and astrophysical scenarios of potential interest. A discrepancy in previous results from other authors was found. Moreover, some of such findings by the same authors were deemed as mutually inconsistent. In this paper, it is demonstrated that, in fact, some calculation errors plagued the most recent calculations by the present author. They are explicitly disclosed and corrected. As a result, all of the examined approaches mutually agree, yielding the same analytical expression for the total 2PN pericentre precession once the appropriate conversions from the adopted parameterisations are made. It is also shown that, in the future, it may become measurable, at least in principle, for some of the recently discovered short-period S-stars in Sgr A*, such as S62 and S4714.


2020 ◽  
Vol 891 (2) ◽  
pp. L36 ◽  
Author(s):  
Eduardo M. Gutiérrez ◽  
Rodrigo Nemmen ◽  
Fabio Cafardo
Keyword(s):  

2013 ◽  
Vol 9 (S303) ◽  
pp. 147-149
Author(s):  
L. O. Sjouwerman ◽  
Y. M. Pihlström

AbstractWe report on the detection of 36 and 44 GHz Class I methanol (CH3OH) maser emission in the Sagittarius A (Sgr A) complex with the Karl G. Jansky Very Large Array (VLA). These VLA observations show that the Sgr A complex harbors at least three different maser tracers of shocked regions in the radio regime. The 44 GHz masers correlate with the positions and velocities of previously detected 36 GHz CH3OH masers, but less with 1720 MHz OH masers. Our detections agree with theoretical predictions that the densities and temperatures conducive for 1720 MHz OH masers may also produce 36 and 44 GHz CH3OH maser emission. However, many 44 GHz masers do not overlap with 36 GHz methanol masers, suggesting that 44 GHz masers also arise in regions too hot and too dense for 36 GHz masers to form. This agrees with the non-detection of 1720 MHz OH masers in the same area, which are thought to be excited under even cooler and less dense conditions. We speculate that the geometry of the 36 GHz masers outlines the current location of a shock front.


2010 ◽  
Vol 331 (2) ◽  
pp. 201-204 ◽  
Author(s):  
G. Sala ◽  
M. Hernanz ◽  
C. Ferri ◽  
J. Greiner
Keyword(s):  

2003 ◽  
Vol 324 (S1) ◽  
pp. 403-406
Author(s):  
Makoto Miyoshi ◽  
Hiroshi Imai ◽  
Junichi Nakashima ◽  
Shuji Deguchi ◽  
Zhi-Qiang Shen
Keyword(s):  

2015 ◽  
Vol 584 ◽  
pp. A118 ◽  
Author(s):  
Aa. Sandqvist ◽  
B. Larsson ◽  
Å. Hjalmarson ◽  
P. Encrenaz ◽  
M. Gerin ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document