scholarly journals Using infrared/X-ray flare statistics to probe the emission regions near the event horizon of Sgr A*

2016 ◽  
Vol 461 (1) ◽  
pp. 552-559 ◽  
Author(s):  
S. Dibi ◽  
S. Markoff ◽  
R. Belmont ◽  
J. Malzac ◽  
J. Neilsen ◽  
...  
Keyword(s):  
X Ray ◽  
2001 ◽  
Vol 205 ◽  
pp. 28-31
Author(s):  
Heino Falcke ◽  
Sera Markoff ◽  
Peter L. Biermann ◽  
Thomas P. Krichbaum ◽  
Fulvio Melia ◽  
...  

We show and discuss results and prospects of high-resolution imaging of the supermassive black hole candidate Sgr A*. We also briefly review the latest observational and theoretical progress for this source. The latest millimeter-VLBI observations show compact radio emission from within a region of about 15 Schwarzschild radii. This compact component is most likely responsible for the so-called sub-mm bump in the spectrum and perhaps even for the recently discovered circular polarization discovered up to 43 GHz and some X-ray emission through synchrotron self-Compton emission. Most importantly, however, the sub-mm emission from Sgr A* opens the door to observe, for the first time, the event horizon of a black hole directly with VLBI at sub-mm wavelengths.


2019 ◽  
Vol 881 (1) ◽  
pp. 62 ◽  
Author(s):  
Daniel C. M. Palumbo ◽  
Sheperd S. Doeleman ◽  
Michael D. Johnson ◽  
Katherine L. Bouman ◽  
Andrew A. Chael
Keyword(s):  

2012 ◽  
Vol 746 (1) ◽  
pp. L10 ◽  
Author(s):  
Joshua C. Dolence ◽  
Charles F. Gammie ◽  
Hotaka Shiokawa ◽  
Scott C. Noble

2006 ◽  
Vol 54 ◽  
pp. 399-405
Author(s):  
S D Hornstein ◽  
K Matthews ◽  
A M Ghez ◽  
J R Lu ◽  
M Morris ◽  
...  
Keyword(s):  
X Ray ◽  

1998 ◽  
Vol 188 ◽  
pp. 455-456
Author(s):  
M. Yokosawa

Active galactic nuclei(AGN) produce many type of active phenomena, powerful X-ray emission, UV hump, narrow beam ejection, gamma-ray emission. Energy of these phenomena is thought to be brought out binding energy between a black hole and surrounding matter. What condition around a black hole produces many type of active phenomena? We investigated dynamical evolution of accretion flow onto a black hole by using a general-relativistic, hydrodynamic code which contains a viscosity based on the alpha-model. We find three types of flow's pattern, depending on thickness of accretion disk. In a case of the thin disk with a thickness less than the radius of the event horizon at the vicinity of a marginally stable orbit, the accreting flow through a surface of the marginally stable orbit becomes thinner due to additional cooling caused by a general-relativistic Roche-lobe overflow and horizontal advection of heat. An accretion disk with a middle thickness, 2rh≤h≤ 3rh, divides into two flows: the upper region of the accreting flow expands into the atmosphere of the black hole, and the inner region of the flow becomes thinner, smoothly accreting onto the black hole. The expansion of the flow generates a dynamically violent structure around the event horizon. The kinetic energy of the violent motion becomes equivalent to the thermal energy of the accreting disk. The shock heating due to violent motion produces a thermally driven wind which flows through the atmosphere above the accretion disk. A very thick disk, 4rh≤h,forms a narrow beam whose energy is largely supplied from hot region generated by shock wave. The accretion flowing through the thick disk,h≥ 2rh, cannot only form a single, laminar flow falling into the black hole, but also produces turbulent-like structure above the event horizon. The middle disk may possibly emit the X-ray radiation observed in active galactic nuclei. The thin disk may produce UV hump of Seyfert galaxy. Thick disk may produce a jet observed in radio galaxy. The thickness of the disk is determined by accretion rate, such ashκ κes/cṁf(r) κ 10rhṁf(r), at the inner region of the disk where the radiation pressure dominates over the gas pressure. Here, Ṁ is the accretion rate and ṁ is the normarized one by the critical-mass flux of the Eddington limit. κesandcare the opacity by electron scattering and the velocity of light.f(r) is a function with a value of unity far from the hole.


2001 ◽  
Vol 205 ◽  
pp. 457-462
Author(s):  
Webster Cash

X-rays have tremendous potential for imaging at the highest angular resulution. The high surface brightness of many x-ray sources will reveal angular scales heretofore thought unreachable. The short wavelengths make instrumentation compact and baselines short. We discuss how practical x-ray interferometers can be built for astronomy using existing technology. We describe the Maxim Pathfinder and Maxim missions which will achieve 100 and 0.1 micro-arcsecond imaging respectively. The science to be tackled with resolution of up to one million times that of HST will be outlined, with emphasis on eventually imaging the event horizon of a black hole.


2018 ◽  
Vol 610 ◽  
pp. A34 ◽  
Author(s):  
D. Chuard ◽  
R. Terrier ◽  
A. Goldwurm ◽  
M. Clavel ◽  
S. Soldi ◽  
...  

Context. For a decade now, evidence has accumulated that giant molecular clouds located within the central molecular zone of our Galaxy reflect X-rays coming from past outbursts of the Galactic supermassive black hole. However, the number of illuminating events as well as their ages and durations are still unresolved questions. Aims. We aim to reconstruct parts of the history of the supermassive black hole Sgr A★ by studying this reflection phenomenon in the molecular complex Sgr C and by determining the line-of-sight positions of its main bright substructures. Methods. Using observations made with the X-ray observatories XMM-Newton and Chandra and between 2000 and 2014, we investigated the variability of the reflected emission, which consists of a Fe Kα line at 6.4 keV and a Compton continuum. We carried out an imaging and a spectral analysis. We also used a Monte Carlo model of the reflected spectra to constrain the line-of-sight positions of the brightest clumps, and hence to assign an approximate date to the associated illuminating events. Results. We show that the Fe Kα emission from Sgr C exhibits significant variability in both space and time, which confirms its reflection origin. The most likely illuminating source is Sgr A★. On the one hand, we report two distinct variability timescales, as one clump undergoes a sudden rise and fall in about 2005, while two others vary smoothly throughout the whole 2000–2014 period. On the other hand, by fitting the Monte Carlo model to the data, we are able to place tight constraints on the 3D positions of the clumps. These two independent approaches provide a consistent picture of the past activity of Sgr A★, since the two slowly varying clumps are located on the same wavefront, while the third (rapidly varying) clump corresponds to a different wavefront, that is, to a different illuminating event. Conclusions. This work shows that Sgr A★ experienced at least two powerful outbursts in the past 300 yrs, and for the first time, we provide an estimation of their age. Extending this approach to other molecular complexes, such as Sgr A, will allow this two-event scenario to be tested further.


2018 ◽  
Vol 856 (2) ◽  
pp. 163 ◽  
Author(s):  
Lia Medeiros ◽  
Chi-kwan Chan ◽  
Feryal Özel ◽  
Dimitrios Psaltis ◽  
Junhan Kim ◽  
...  

2019 ◽  
Vol 486 (1) ◽  
pp. 1094-1122 ◽  
Author(s):  
Jonathan Mackey ◽  
Stefanie Walch ◽  
Daniel Seifried ◽  
Simon C O Glover ◽  
Richard Wünsch ◽  
...  

ABSTRACT Sources of X-rays such as active galactic nuclei and X-ray binaries are often variable by orders of magnitude in luminosity over time-scales of years. During and after these flares the surrounding gas is out of chemical and thermal equilibrium. We introduce a new implementation of X-ray radiative transfer coupled to a time-dependent chemical network for use in 3D magnetohydrodynamical simulations. A static fractal molecular cloud is irradiated with X-rays of different intensity, and the chemical and thermal evolution of the cloud are studied. For a simulated $10^5\, \mathrm{M}_\odot$ fractal cloud, an X-ray flux <0.01 erg cm−2 s−1 allows the cloud to remain molecular, whereas most of the CO and H2 are destroyed for a flux of ≥1 erg cm−2 s−1. The effects of an X-ray flare, which suddenly increases the X-ray flux by 105×, are then studied. A cloud exposed to a bright flare has 99 per cent of its CO destroyed in 10–20 yr, whereas it takes >103 yr for 99 per cent of the H2 to be destroyed. CO is primarily destroyed by locally generated far-UV emission from collisions between non-thermal electrons and H2; He+ only becomes an important destruction agent when the CO abundance is already very small. After the flare is over, CO re-forms and approaches its equilibrium abundance after 103–105 yr. This implies that molecular clouds close to Sgr A⋆ in the Galactic Centre may still be out of chemical equilibrium, and we predict the existence of clouds near flaring X-ray sources in which CO has been mostly destroyed but H is fully molecular.


Universe ◽  
2020 ◽  
Vol 6 (11) ◽  
pp. 212
Author(s):  
Yurij Baryshev

Modern multimessenger astronomy delivers unique opportunity for performing crucial observations that allow for testing the physics of the gravitational interaction. These tests include detection of gravitational waves by advanced LIGO-Virgo antennas, Event Horizon Telescope observations of central relativistic compact objects (RCO) in active galactic nuclei (AGN), X-ray spectroscopic observations of Fe Kα line in AGN, Galactic X-ray sources measurement of masses and radiuses of neutron stars, quark stars, and other RCO. A very important task of observational cosmology is to perform large surveys of galactic distances independent on cosmological redshifts for testing the nature of the Hubble law and peculiar velocities. Forthcoming multimessenger astronomy, while using such facilities as advanced LIGO-Virgo, Event Horizon Telescope (EHT), ALMA, WALLABY, JWST, EUCLID, and THESEUS, can elucidate the relation between Einstein’s geometrical and Feynman’s quantum-field approaches to gravity physics and deliver a new possibilities for unification of gravitation with other fundamental quantum physical interactions.


Sign in / Sign up

Export Citation Format

Share Document