The Role of Electrostatic Charging of Small and Intermediate Sized Bodies in the Solar System

Author(s):  
D. A. Mendis
Author(s):  
Rachel L. Klima ◽  
Noah E. Petro

Water and/or hydroxyl detected remotely on the lunar surface originates from several sources: (i) comets and other exogenous debris; (ii) solar-wind implantation; (iii) the lunar interior. While each of these sources is interesting in its own right, distinguishing among them is critical for testing hypotheses for the origin and evolution of the Moon and our Solar System. Existing spacecraft observations are not of high enough spectral resolution to uniquely characterize the bonding energies of the hydroxyl molecules that have been detected. Nevertheless, the spatial distribution and associations of H, OH − or H 2 O with specific lunar lithologies provide some insight into the origin of lunar hydrous materials. The global distribution of OH − /H 2 O as detected using infrared spectroscopic measurements from orbit is here examined, with particular focus on regional geological features that exhibit OH − /H 2 O absorption band strengths that differ from their immediate surroundings. This article is part of the themed issue ‘The origin, history and role of water in the evolution of the inner Solar System’.


1999 ◽  
Vol 117 (5) ◽  
pp. 2561-2562 ◽  
Author(s):  
F. Namouni ◽  
C. D. Murray

Economics ◽  
2015 ◽  
pp. 652-666
Author(s):  
Alberto Francesconi ◽  
Riccardo Bonazzi ◽  
Claudia Dossena

Online communities are becoming an important way to support firms towards an open innovation approach. However, knowledge shared in an online community represents only a potential for firm's innovation aims. The effectiveness of exploration and exploitation of this knowledge depends on firm's absorptive capacity. In this work the authors focus on the time an idea, shared within an online community, takes to be transformed from a ‘potential' into a ‘realized' innovation by a firm. In particular, conceiving knowledge as a trajectory across pole of attraction rather than a linear process, the authors develop a model inspired by the solar system metaphor. Preliminary results from a case study are presented. They suggest firms may improve the effectiveness of absorptive capacity exploiting the mediation role of a software tool.


2018 ◽  
Vol 854 (1) ◽  
pp. 18 ◽  
Author(s):  
C. Travaglio ◽  
T. Rauscher ◽  
A. Heger ◽  
M. Pignatari ◽  
C. West

Exploration by space missions of the near-nucleus regions of comets Halley and Grigg-Skjellerup has resulted in valuable but expensive snapshots of cometary phenomena. The ‘ground truth’ from such missions, which can be established only by this means of dedicated space exploration, provides essential inputs to models of cometary processes. It also gives calibration data for a very wide base of cometary and asteroidal observations, past, present and future. Seen as objects which are both eroded by impacts from interplanetary dust and also the progenitors of interplanetary dust, we find both asteroids and comets are needed to contribute to this population. Contrary to expectations, as new data on the asteroids and comets is analysed, we find the differences between the two classes of primordial body is very much less distinct; accounting for the interplanetary distribution and properties of dust mass requires not only both classes of object but also a distribution of mixed classes. ESA’s newly selected cometary mission Rosetta will offer a unique opportunity, during a rendezvous encounter from aphelion to perihelion, for the extended and detailed in situ observations of a target comet. It will also act as a valuable focus on the nature and role of comets in both the origin and development of the Solar System.


1977 ◽  
Vol 39 ◽  
pp. 569-571
Author(s):  
I. P. Williams

A likely origin of the asteroids (and possibly, of the comets?) is the natural outcome of the following scenario that we propose for the formation of the planets. Protoplanets of similar mass and solar composition will segregate in three different ways: For those far enough from the sun (like Uranus and Neptune), the segregation of icy grains releases enough energy to drive the remaining gases to infinity. For all other planets, the segregation of refractory material only does not release enough energy to disrupt the protoplanet; however, while spiraling inwards in a resisting medium, the terrestrial protoplanets cross their Roche limit and lose their gaseous outer layers. Asteroids (or comets) could therefore originate from the disruption of protoplanets before the settling of their refractory (or icy) grains is completed.


2020 ◽  
Vol 499 (1) ◽  
pp. 1212-1225
Author(s):  
Daohai Li ◽  
Alexander J Mustill ◽  
Melvyn B Davies

ABSTRACT Most stars form in a clustered environment. Both single and binary stars will sometimes encounter planetary systems in such crowded environments. Encounter rates for binaries may be larger than for single stars, even for binary fractions as low as 10–20 per cent. In this work, we investigate scatterings between a Sun–Jupiter pair and both binary and single stars as in young clusters. We first perform a set of simulations of encounters involving wide ranges of binaries and single stars, finding that wider binaries have larger cross-sections for the planet’s ejection. Secondly, we consider such scatterings in a realistic population, drawing parameters for the binaries and single stars from the observed population. The scattering outcomes are diverse, including ejection, capture/exchange, and collision. The binaries are more effective than single stars by a factor of several or more in causing the planet’s ejection and collision. Hence, in a cluster, as long as the binary fraction is larger than about 10 per cent, the binaries will dominate the scatterings in terms of these two outcomes. For an open cluster of a stellar density 50 pc−3, a lifetime 100 Myr, and a binary fraction 0.5, we estimate that Jupiters of the order of 1 per cent are ejected, 0.1 per cent collide with a star, 0.1 per cent change ownership, and 10 per cent of the Sun–Jupiter pairs acquire a stellar companion during scatterings. These companions are typically thousands of au distant and in half of the cases (so 5 per cent of all Sun–Jupiter pairs), they can excite the planet’s orbit through Kozai–Lidov mechanism before being stripped by later encounters. Our result suggests that the Solar system may have once had a companion in its birth cluster.


1999 ◽  
Vol 172 ◽  
pp. 25-37
Author(s):  
S. Ferraz-Mello

AbstractThis paper reviews recent advances in several topics of resonant asteroidal dynamics as the role of resonances in the transportation of asteroids and asteroidal debris to the inner and outer solar system; the explanation of the contrast of a depleted 2/1 resonance (Hecuba gap) and a high-populated 3/2 resonance (Hilda group); the overall stochasticity created in the asteroid belt by the short-period perturbations of Jupiter’s orbit, with emphasis in the formation of significant three-period resonances, the chaotic behaviour of the outer asteroid belt, and the depletion of the Hecuba gap.


Author(s):  
L. J. Hallis

The original hydrogen isotope (D/H) ratios of different planetary bodies may indicate where each body formed in the Solar System. However, geological and atmospheric processes can alter these ratios through time. Over the past few decades, D/H ratios in meteorites from Vesta and Mars, as well as from S- and C-type asteroids, have been measured. The aim of this article is to bring together all previously published data from these bodies, as well as the Earth, in order to determine the original D/H ratio for each of these inner Solar System planetary bodies. Once all secondary processes have been stripped away, the inner Solar System appears to be relatively homogeneous in terms of water D/H, with the original water D/H ratios of Vesta, Mars, the Earth, and S- and C-type asteroids all falling between δD values of −100‰ and −590‰. This homogeneity is in accord with the ‘Grand tack’ model of Solar System formation, where giant planet migration causes the S- and C-type asteroids to be mixed within 1 AU to eventually form the terrestrial planets. This article is part of the themed issue ‘The origin, history and role of water in the evolution of the inner Solar System’.


Sign in / Sign up

Export Citation Format

Share Document