Is Fe deficiency rather than P deficiency the cause of cluster root formation in Casuarina species?

Author(s):  
El Houssine Zaïd ◽  
Moustapha Arahou ◽  
Hoang G. Diem ◽  
Rachida El Morabet
2003 ◽  
Vol 248 (1/2) ◽  
pp. 229-235 ◽  
Author(s):  
El Houssine Zaïd ◽  
Moustapha Arahou ◽  
Hoang G. Diem ◽  
Rachida El Morabet

1990 ◽  
Vol 68 (12) ◽  
pp. 2564-2570 ◽  
Author(s):  
Suzanne Racette ◽  
Isabelle Louis ◽  
John G. Torrey

The term cluster root is used to refer to a dense cluster of determinate lateral roots (rootlets), in preference to the terms proteoid root and proteoid-like root used by other authors. Cluster roots are often formed by the actinorhizal plant Gymnostoma papuanum. In water culture, cluster root formation by G. papuanum was influenced by aeration, phosphorus level, and nitrogen source. Aeration was a critical factor, with nonaerated rooted cuttings having far fewer cluster roots than aerated ones. Phosphorus deficiency was the single nutrient deficiency that led to increased cluster root formation. Seedlings, grown under conditions of either low (0.8 mg∙L−1) or no phosphorus, responded by devoting a greater portion of root growth to the production of cluster roots, with no overall reduction in root growth for 6 weeks. The response to varying phosphorus level was modified by providing nitrogen in different forms. Supplying nitrogen as ammonium resulted in low levels of cluster root formation. Supplying nitrate to nodulated seedlings led to an increase in cluster root formation in comparison with plants that depended solely upon dinitrogen fixation by Frankia. Greatest cluster root formation occurred on plants grown in aerated water cultures supplied with nitrate and with little or no phosphorus. Key words: Gymnostoma papuanum, cluster roots, proteoid roots, phosphorus deficiency.


2013 ◽  
Vol 373 (1-2) ◽  
pp. 765-773 ◽  
Author(s):  
M. Delgado ◽  
A. Zúñiga-Feest ◽  
M. Alvear ◽  
F. Borie
Keyword(s):  

2021 ◽  
Vol 12 ◽  
Author(s):  
María José García ◽  
Macarena Angulo ◽  
Carlos García ◽  
Carlos Lucena ◽  
Esteban Alcántara ◽  
...  

To cope with P, S, or Fe deficiency, dicot plants, like Arabidopsis, develop several responses (mainly in their roots) aimed to facilitate the mobilization and uptake of the deficient nutrient. Within these responses are the modification of root morphology, an increased number of transporters, augmented synthesis-release of nutrient solubilizing compounds and the enhancement of some enzymatic activities, like ferric reductase activity (FRA) or phosphatase activity (PA). Once a nutrient has been acquired in enough quantity, these responses should be switched off to minimize energy costs and toxicity. This implies that they are tightly regulated. Although the responses to each deficiency are induced in a rather specific manner, crosstalk between them is frequent and in such a way that P, S, or Fe deficiency can induce responses related to the other two nutrients. The regulation of the responses is not totally known but some hormones and signaling substances have been involved, either as activators [ethylene (ET), auxin, nitric oxide (NO)], or repressors [cytokinins (CKs)]. The plant hormone ET is involved in the regulation of responses to P, S, or Fe deficiency, and this could partly explain the crosstalk between them. In spite of these crosslinks, it can be hypothesized that, to confer the maximum specificity to the responses of each deficiency, ET should act in conjunction with other signals and/or through different transduction pathways. To study this latter possibility, several responses to P, S, or Fe deficiency have been studied in the Arabidopis wild-type cultivar (WT) Columbia and in some of its ethylene signaling mutants (ctr1, ein2-1, ein3eil1) subjected to the three deficiencies. Results show that key elements of the ET transduction pathway, like CTR1, EIN2, and EIN3/EIL1, can play a role in the crosstalk among nutrient deficiency responses.


2009 ◽  
Vol 105 (3) ◽  
pp. 365-374 ◽  
Author(s):  
Ahmad Abdolzadeh ◽  
Xing Wang ◽  
Erik J. Veneklaas ◽  
Hans Lambers

Sign in / Sign up

Export Citation Format

Share Document