1972 ◽  
Vol 1 ◽  
pp. 93-101 ◽  
Author(s):  
S. Yumi

ABSTRACTAnalysing the residual latitude of the station, local trend in latitude variation other than by the polar motion was found.Residual latitude was calculated for each of 26 stations which gave the continuous records of observation during 6 years comprising — 1962 — 1967 as a difference between observed variation of latitude and – normal variation calculated by the polar coordinates Iderived from all the results of 26 stations.As far as the results during these six years are concerned, local trend at any station it seemed to be expressed in terms of 3λ.Assumed effect of local trend on the coordinates values of the instantaneous pole is also discussed.


1975 ◽  
Vol 26 ◽  
pp. 87-92
Author(s):  
P. L. Bender

AbstractFive important geodynamical quantities which are closely linked are: 1) motions of points on the Earth’s surface; 2)polar motion; 3) changes in UT1-UTC; 4) nutation; and 5) motion of the geocenter. For each of these we expect to achieve measurements in the near future which have an accuracy of 1 to 3 cm or 0.3 to 1 milliarcsec.From a metrological point of view, one can say simply: “Measure each quantity against whichever coordinate system you can make the most accurate measurements with respect to”. I believe that this statement should serve as a guiding principle for the recommendations of the colloquium. However, it also is important that the coordinate systems help to provide a clear separation between the different phenomena of interest, and correspond closely to the conceptual definitions in terms of which geophysicists think about the phenomena.In any discussion of angular motion in space, both a “body-fixed” system and a “space-fixed” system are used. Some relevant types of coordinate systems, reference directions, or reference points which have been considered are: 1) celestial systems based on optical star catalogs, distant galaxies, radio source catalogs, or the Moon and inner planets; 2) the Earth’s axis of rotation, which defines a line through the Earth as well as a celestial reference direction; 3) the geocenter; and 4) “quasi-Earth-fixed” coordinate systems.When a geophysicists discusses UT1 and polar motion, he usually is thinking of the angular motion of the main part of the mantle with respect to an inertial frame and to the direction of the spin axis. Since the velocities of relative motion in most of the mantle are expectd to be extremely small, even if “substantial” deep convection is occurring, the conceptual “quasi-Earth-fixed” reference frame seems well defined. Methods for realizing a close approximation to this frame fortunately exist. Hopefully, this colloquium will recommend procedures for establishing and maintaining such a system for use in geodynamics. Motion of points on the Earth’s surface and of the geocenter can be measured against such a system with the full accuracy of the new techniques.The situation with respect to celestial reference frames is different. The various measurement techniques give changes in the orientation of the Earth, relative to different systems, so that we would like to know the relative motions of the systems in order to compare the results. However, there does not appear to be a need for defining any new system. Subjective figures of merit for the various system dependon both the accuracy with which measurements can be made against them and the degree to which they can be related to inertial systems.The main coordinate system requirement related to the 5 geodynamic quantities discussed in this talk is thus for the establishment and maintenance of a “quasi-Earth-fixed” coordinate system which closely approximates the motion of the main part of the mantle. Changes in the orientation of this system with respect to the various celestial systems can be determined by both the new and the conventional techniques, provided that some knowledge of changes in the local vertical is available. Changes in the axis of rotation and in the geocenter with respect to this system also can be obtained, as well as measurements of nutation.


1975 ◽  
Vol 26 ◽  
pp. 341-380 ◽  
Author(s):  
R. J. Anderle ◽  
M. C. Tanenbaum

AbstractObservations of artificial earth satellites provide a means of establishing an.origin, orientation, scale and control points for a coordinate system. Neither existing data nor future data are likely to provide significant information on the .001 angle between the axis of angular momentum and axis of rotation. Existing data have provided data to about .01 accuracy on the pole position and to possibly a meter on the origin of the system and for control points. The longitude origin is essentially arbitrary. While these accuracies permit acquisition of useful data on tides and polar motion through dynamio analyses, they are inadequate for determination of crustal motion or significant improvement in polar motion. The limitations arise from gravity, drag and radiation forces on the satellites as well as from instrument errors. Improvements in laser equipment and the launch of the dense LAGEOS satellite in an orbit high enough to suppress significant gravity and drag errors will permit determination of crustal motion and more accurate, higher frequency, polar motion. However, the reference frame for the results is likely to be an average reference frame defined by the observing stations, resulting in significant corrections to be determined for effects of changes in station configuration and data losses.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Xin Jin ◽  
Xin Liu ◽  
Jinyun Guo ◽  
Yi Shen

AbstractPolar motion is the movement of the Earth's rotational axis relative to its crust, reflecting the influence of the material exchange and mass redistribution of each layer of the Earth on the Earth's rotation axis. To better analyze the temporally varying characteristics of polar motion, multi-channel singular spectrum analysis (MSSA) was used to analyze the EOP 14 C04 series released by the International Earth Rotation and Reference System Service (IERS) from 1962 to 2020, and the amplitude of the Chandler wobbles were found to fluctuate between 20 and 200 mas and decrease significantly over the last 20 years. The amplitude of annual oscillation fluctuated between 60 and 120 mas, and the long-term trend was 3.72 mas/year, moving towards N56.79 °W. To improve prediction of polar motion, the MSSA method combining linear model and autoregressive moving average model was used to predict polar motion with ahead 1 year, repeatedly. Comparing to predictions of IERS Bulletin A, the results show that the proposed method can effectively predict polar motion, and the improvement rates of polar motion prediction for 365 days into the future were approximately 50% on average.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Justyna Śliwińska ◽  
Jolanta Nastula ◽  
Małgorzata Wińska

AbstractIn geodesy, a key application of data from the Gravity Recovery and Climate Experiment (GRACE), GRACE Follow-On (GRACE-FO), and Satellite Laser Ranging (SLR) is an interpretation of changes in polar motion excitation due to variations in the Earth’s surficial fluids, especially in the continental water, snow, and ice. Such impacts are usually examined by computing hydrological and cryospheric polar motion excitation (hydrological and cryospheric angular momentum, HAM/CAM). Three types of GRACE and GRACE-FO data can be used to determine HAM/CAM, namely degree-2 order-1 spherical harmonic coefficients of geopotential, gridded terrestrial water storage anomalies computed from spherical harmonic coefficients, and terrestrial water storage anomalies obtained from mascon solutions. This study compares HAM/CAM computed from these three kinds of gravimetric data. A comparison of GRACE-based excitation series with HAM/CAM obtained from SLR is also provided. A validation of different HAM/CAM estimates is conducted here using the so-called geodetic residual time series (GAO), which describes the hydrological and cryospheric signal in the observed polar motion excitation. Our analysis of GRACE mission data indicates that the use of mascon solutions provides higher consistency between HAM/CAM and GAO than the use of other datasets, especially in the seasonal spectral band. These conclusions are confirmed by the results obtained for data from first 2 years of GRACE-FO. Overall, after 2 years from the start of GRACE-FO, the high consistency between HAM/CAM and GAO that was achieved during the best GRACE period has not yet been repeated. However, it should be remembered that with the systematic appearance of subsequent GRACE-FO observations, this quality can be expected to increase. SLR data can be used for determination of HAM/CAM to fill the one-year-long data gap between the end of GRACE and the start of the GRACE-FO mission. In addition, SLR series could be particularly useful in determination of HAM/CAM in the non-seasonal spectral band. Despite its low seasonal amplitudes, SLR-based HAM/CAM provides high phase consistency with GAO for annual and semiannual oscillation.


2014 ◽  
Vol 59 (2) ◽  
pp. 200-211 ◽  
Author(s):  
Giorgio Spada ◽  
Gaia Galassi ◽  
Marco Olivieri

1997 ◽  
Vol 42 (11) ◽  
pp. 927-931 ◽  
Author(s):  
Yonghong Zhou ◽  
Dawei Zheng ◽  
Benjamin Fong Chao

1996 ◽  
Vol 82 (1-2) ◽  
pp. 35-67 ◽  
Author(s):  
G. Hulot ◽  
M. LE Huy ◽  
J.-L. LE MouëL
Keyword(s):  

1988 ◽  
Vol 128 ◽  
pp. 215-220
Author(s):  
R. Verbeiren

Least-squares collocation is a powerful method for combining interpolation, filtering and parameter determination in one single computational step. We show that the method is applicable to the computation of polar motion values from a very large set of basic observational data. In this study, we use the ILS observations from 1900 to 1978.


Sign in / Sign up

Export Citation Format

Share Document