The Galactic Number of Wolf-Rayet Stars Produced Via Close Binary Evolution

Author(s):  
E. J. A. Meurs ◽  
E. P. J. Van Den Heuvel
2016 ◽  
Vol 12 (S323) ◽  
pp. 65-69 ◽  
Author(s):  
Jorge García-Rojas ◽  
Romano L. M. Corradi ◽  
Henri M. J. Boffin ◽  
Hektor Monteiro ◽  
David Jones ◽  
...  

AbstractThe discrepancy between abundances computed using optical recombination lines (ORLs) and collisionally excited lines (CELs) is a major, unresolved problem with significant implications for the determination of chemical abundances throughout the Universe. In planetary nebulae (PNe), the most common explanation for the discrepancy is that two different gas phases coexist: a hot component with standard metallicity, and a much colder plasma enhanced in heavy elements. This dual nature is not predicted by mass loss theories, and direct observational support for it is still weak. In this work, we present our recent findings that demonstrate that the largest abundance discrepancies are associated with close binary central stars. OSIRIS-GTC tunable filter imaging of the faint O ii ORLs and MUSE-VLT deep 2D spectrophotometry confirm that O ii ORL emission is more centrally concentrated than that of [Oiii] CELs and, therefore, that the abundance discrepancy may be closely linked to binary evolution.


2018 ◽  
Vol 612 ◽  
pp. A61 ◽  
Author(s):  
Luc Dessart ◽  
Sung-Chul Yoon ◽  
Eli Livne ◽  
Roni Waldman

Massive stars with a core-halo structure are interesting objects for stellar physics and hydrodynamics. Using simulations for stellar evolution, radiation hydrodynamics, and radiative transfer, we study the explosion of stars with an extended and tenuous envelope (i.e. stars in which 95% of the mass is contained within 10% or less of the surface radius). We consider both H-rich supergiant and He-giant progenitors resulting from close-binary evolution and dying with a final mass of 2.8–5 M⊙. An extended envelope causes the supernova (SN) shock to brake and a reverse shock to form, sweeping core material into a dense shell. The shock-deposited energy, which suffers little degradation from expansion, is trapped in ejecta layers of moderate optical depth, thereby enhancing the SN luminosity at early times. With the delayed 56Ni heating, we find that the resulting optical and near-IR light curves all exhibit a double-peak morphology. We show how an extended progenitor can explain the blue and featureless optical spectra of some Type IIb and Ib SNe. The dense shell formed by the reverse shock leads to line profiles with a smaller and near-constant width. This ejecta property can explain the statistically narrower profiles of Type IIb compared to Type Ib SNe, as well as the peculiar Hα profile seen in SN 1993J. At early times, our He-giant star explosion model shows a high luminosity, a blue colour, and featureless spectra reminiscent of the Type Ib SN 2008D, suggesting a low-mass progenitor.


1986 ◽  
Vol 90 ◽  
pp. 473-476
Author(s):  
E.M. Drobyshevski

AbstractA possibility is analyzed of explaining the chemical anomalies of chemically peculiar (CP) F-A-B stars basing on the assumption of the formation of a large number of moonlike planetoids both in the course of separation of the components and in late stages of close binary evolution.Primitive igneous differentiation of such planetoids results in their crust becoming deficient in Mg, Ca, Sc and enriched in Pe, Sr, Ba, and the Rare Earths. Infall of such planetoids or crust fragments ejected in their collisions with one another onto an A star makes it Am-type. The deficiency of some elements relative to normal abundance can be accounted for if one assumes that these elements present in the matter streaming from one binary component to another condense with subsequent rain-out into a component or formation of the planetoids.The more diverse and complex anomalies (including the separation of isotopes) can be explained in the same context of the close binary evolution by invoking the ideas of magnetic cosmochemistry which considers the consequences of extremely nonequilibrium processes associated with the flow of magnetic-field generated electrical currents through a rarefied matter in space.


2000 ◽  
Vol 175 ◽  
pp. 668-680 ◽  
Author(s):  
Douglas R. Gies

AbstractModels of close binary evolution predict that mass gainers will be spun up to speeds close to the critical rotational velocity while the mass donors will appear as stripped down He stars, white dwarfs, or neutron stars. I argue here that the mass gainers are closely related to the Be stars. I present a list of the known Be binary systems which consists of those with bright, Roche-filling companions and those with faint or undetected companions. Notably absent are Be + B systems which are expected if the Be phase is a stage in the life of a single star. We now have the first example of a Be + He star system in the binary, ϕ Per, and taken together with the well known Be X-ray binaries, there is clear evidence that some fraction of Be stars are created in binaries; whether all such rapid rotators are so formed remains unknown.


2008 ◽  
Vol 4 (S252) ◽  
pp. 419-420
Author(s):  
Hongwei. Ge ◽  
R. F. Webbink ◽  
Z. Han

AbstractWe describe our work on the development and application of a stellar structure code to compute model sequences representing donor stars in interacting binaries subject to rapid (adiabatic) mass-loss. The donor star is assumed to remain in hydrostatic equilibrium, but no heat flow is allowed. These sequences can be used to define bifurcation sequences in close binary evolution, and to circumscribe possible survivors of common envelope evolution.


2020 ◽  
Vol 645 ◽  
pp. A6
Author(s):  
E. Zapartas ◽  
S. E. de Mink ◽  
S. Justham ◽  
N. Smith ◽  
M. Renzo ◽  
...  

The majority of massive stars, which are the progenitors of core-collapse supernovae (SNe), are found in close binary systems. In a previous work, we modeled the fraction of hydrogen-rich, Type II SN progenitors whose evolution is affected by mass exchange with their companion, finding this to be between ≈1/3 and 1/2 for most assumptions. Here we study in more depth the impact of this binary history of Type II SN progenitors on their final pre-SN core mass distribution, using population synthesis simulations. We find that binary star progenitors of Type II SNe typically end their life with a larger core mass than they would have had if they had lived in isolation because they gained mass or merged with a companion before their explosion. The combination of the diverse binary evolutionary paths typically leads to a marginally shallower final core mass distribution. In discussing our results in the context of the red supergiant problem, that is, the reported lack of detected high luminosity progenitors, we conclude that binary evolution does not seem to significantly affect the issue. This conclusion is quite robust against our variations in the assumptions of binary physics. We also predict that inferring the initial masses of Type II SN progenitors by “age-dating” their surrounding environment systematically yields lower masses compared to methods that probe the pre-SN core mass or luminosity. A robust discrepancy between the inferred initial masses of a SN progenitor from those different techniques could indicate an evolutionary history of binary mass accretion or merging.


2020 ◽  
Vol 495 (2) ◽  
pp. 2509-2514
Author(s):  
M Echeveste ◽  
M L Novarino ◽  
O G Benvenuto ◽  
M A De Vito

ABSTRACT We study the evolution of close binary systems in order to account for the existence of the recently observed binary system containing the most massive millisecond pulsar ever detected, PSR J0740+6620, and its ultra-cool helium white dwarf companion. In order to find a progenitor for this object we compute the evolution of several binary systems composed by a neutron star and a normal donor star employing our stellar code. We assume conservative mass transfer. We also explore the effects of irradiation feedback on the system. We find that irradiated models also provide adequate models for the millisecond pulsar and its companion, so both irradiated and non irradiated systems are good progenitors for PSR J0740+6620. Finally, we obtain a binary system that evolves and accounts for the observational data of the system composed by PSR J0740+6620 (i.e. orbital period, mass, effective temperature and inferred metallicity of the companion, and mass of the neutron star) in a time scale smaller than the age of the Universe. In order to reach an effective temperature as low as observed, the donor star should have an helium envelope as demanded by observations.


1999 ◽  
Vol 193 ◽  
pp. 624-625 ◽  
Author(s):  
Joris Van Bever ◽  
H. Belkus ◽  
Dany Vanbeveren ◽  
Walter van Rensbergen

Using a population number synthesis code and detailed massive star evolutionary calculations, we investigate the effect of close binary evolution on Hα and Hβ emission-line strength variation in starburst regions. The Hβ line strength especially, is considered as a good age indicator. We demonstrate that the formation of rejuvenated accretion stars (Blue Stragglers) through RLOF lengthens the life-time of the Hβ flux and makes the age determination of a starburst regions ambiguous. We separately calculate the effect of Wolf-Rayet stars and of X-ray binaries on Hα and Hβ and conclude that both are of minor importance.


2003 ◽  
Vol 212 ◽  
pp. 576-577
Author(s):  
Joris Van Bever ◽  
Dany Vanbeveren

We present the results of a study on the behaviour of the blue and red WR emission bumps (around 4650Å and 5808Å) and of the nebular contribution to He ii λ4686 in evolving young starburst regions (such as Wolf-Rayet galaxies), containing a non-negligible binary population. Calculations were made for solar metallicity and 1/20 solar. The population synthesis program uses an extended library of stellar evolutionary tracks of single stars and binaries, computed using the most recent stellar wind mass loss rates during RSG, LBV and WR stages. In the case of binaries, we account in detail for the effects of Roche lobe overflow, mass transfer and mass accretion, common envelope evolution, the spiral-in process, asymmetric kicks to neutron stars as a result of their supernova explosion, etc. This research is part of a more extensive project to explore every possible impact of massive binaries on stellar populations.


Sign in / Sign up

Export Citation Format

Share Document