Scheduling of automated guided vehicles for material handling: dynamic shop floor feedback

Author(s):  
Leslie Interrante ◽  
Daniel Rochowiak ◽  
Ben Sumrall
Electronics ◽  
2021 ◽  
Vol 10 (18) ◽  
pp. 2235
Author(s):  
Imanol Mugarza ◽  
Juan Carlos Mugarza

Mobile robots, such as Automated Guided Vehicles (AGVs), are increasingly employed in automated manufacturing systems or automated warehouses. They are used for many kinds of applications, such as goods and material handling. These robots may also share industrial areas and routes with humans. Other industrial equipment (i.e., forklifts) could also obstruct the outlined routes. With this in mind, in this article, a coloured Petri net-based traffic controller is proposed for collision-free AGV navigation, in which other elements moving throughout the industrial area, such as humans, are also taken into account for the trajectory planning and obstacle avoidance. For the optimal path and collision-free trajectory planning and traffic control, the D* Lite algorithm was used. Moreover, a case study and an experimental validation of the suggested solution in an industrial shop floor are presented.


Author(s):  
Carlos Llopis-Albert ◽  
Francisco Rubio ◽  
Francisco Valero

<p class="Textoindependiente21">The designing of an efficient warehouse management system is a key factor to improve productivity and reduce costs. The use of Automated Guided Vehicles (AVGs) in Material Handling Systems (MHS) and Flexible Manufacturing Systems (FMS) can help to that purpose. This paper is intended to provide insight regarding the technical and financial suitability of the implementation of a fleet of AGVs. This is carried out by means of a fuzzy set/qualitative comparative analysis (fsQCA) by measuring the level of satisfaction of managerial decision makers.</p>


Author(s):  
Karin Kandananond

Proper manual material handling (MMH) is the important step leading to the occupational safety of the workers on the shop floor as well as the productivity improvement of the manufacturing process. The objectives of this study are the application of different risk assessment methods, the redesign of the workstation to reduce the occupational risk and the utilization of software package to validate the proposed interventions. As a result, an assembly line of a product is selected as the case study to validate the proposed agenda. Afterwards, four lifting assessment methods, i.e. NIOSH lift equation, Snook Psychophysical Table, OSU Lift guidelines and ACGIH/TLV, are used to assess the hazard risk in the assembly line. After these methods are performed, the results are introduced to recommend the newly designed working conditions, i.e. postures, movements and the barriers. To validate the improved design, new configurations are simulated by the virtual ergonomic program and the ergonomic analysis is performed. The important results, e.g. low back compression and percent of population capable, are calculated by the software to determine the appropriate values which are used as the guidelines for a safe working condition. Moreover, the manufacturing process is also simulated to improve that the ergonomic redesign of the shop floor environment and another consequence of the implementation leads to the significant increase of the productivity.


Author(s):  
Hamed Fazlollahtabar ◽  
Mohammad Saidi-Mehrabad ◽  
Ellips Masehian

Purpose This paper aims to propose and formulate a complicated routing/scheduling problem for multiple automated guided vehicles (AGVs) in a manufacturing system. Design/methodology/approach Considering the due date of AGVs requiring for material handling among shops in a jobshop layout, their earliness and tardiness are significant in satisfying the expected cycle time and from an economic view point. Therefore, the authors propose a mathematical program to minimize the penalized earliness and tardiness for a conflict-free and just-in-time production. Findings The model considers a new concept of turning point for deadlock resolution. As the mathematical program is difficult to solve with a conventional method, an optimization method in two stages, namely, searching the solution space and finding optimal solutions are proposed. The performance of the proposed mathematical model is tested in a numerical example. Practical implications A case study in real industrial environment is conducted. The findings lead the decision-makers to develop a user interface decision support as a simulator to plan the AGVs’ movement through the manufacturing network and help AGVs to prevent deadlock trap or conflicts. The proposed decision support can easily be commercialized. Originality/value The benefits of such commercialization are increase in the quality of material handling, improve the delivery time and prevent delays, decrease the cost of traditional handling, capability of computerized planning and control, intelligent tracking and validation experiments in simulation environment.


The industry faces with constant demand of tremendous Production criteria to be met with human workers this production rate is highly likely to fall behind as the time progresses, to solve the problem to obtain continuous production without any interruption, this paper helps understand how a manipulator will work for a very basic operations and how will the industry executive will be able to manage the shop floor. This project aims to show how a PLC is used in a automation and how a PLC based system is integrated with a IoT platform


2021 ◽  
Vol 1199 (1) ◽  
pp. 012015
Author(s):  
M Dobrzanska ◽  
P Dobrzanski

Abstract Modern production systems are mainly characterized by, among others, the use of automated transport systems. One of the components of such transport systems are automated guided vehicles (AGV). These vehicles are primarily used in the material handling due to their greater efficiency, flexibility and lower operating costs. The main aim of the article is to present the possibility of using simulation modelling in the analysis of internal transport operations using automated guided vehicles.


2020 ◽  
Vol 40 (2) ◽  
pp. 219-234 ◽  
Author(s):  
Humyun Fuad Rahman ◽  
Mukund Nilakantan Janardhanan ◽  
Peter Nielsen

Purpose Optimizing material handling within the factory is one of the key problems of modern assembly line systems. The purpose of this paper is to focus on simultaneously balancing a robotic assembly line and the scheduling of material handling required for the operation of such a system, a topic that has received limited attention in academia. Manufacturing industries focus on full autonomy because of the rapid advancements in different elements of Industry 4.0 such as the internet of things, big data and cloud computing. In smart assembly systems, this autonomy aims at the integration of automated material handling equipment such as automated guided vehicles (AGVs) to robotic assembly line systems to ensure a reliable and flexible production system. Design/methodology/approach This paper tackles the problem of designing a balanced robotic assembly line and the scheduling of AGVs to feed materials to these lines such that the cycle time and total tardiness of the assembly system are minimized. Because of the combination of two well-known complex problems such as line balancing and material handling and a heuristic- and metaheuristic-based integrated decision approach is proposed. Findings A detailed computational study demonstrates how an integrated decision approach can serve as an efficient managerial tool in designing/redesigning assembly line systems and support automated transportation infrastructure. Originality/value This study is beneficial for production managers in understanding the main decisional steps involved in the designing/redesigning of smart assembly systems and providing guidelines in decision-making. Moreover, this study explores the material distribution scheduling problems in assembly systems, which is not yet comprehensively explored in the literature.


Author(s):  
Shanshan Zha ◽  
Yu Guo ◽  
Shaohua Huang ◽  
Qi Wu ◽  
Pengzhou Tang

Dynamic facility layout problems involve devising the optimal layout for each different production period. This article studies unequal-area dynamic facility layout problems under fuzzy random environment to minimize the sum of the material handling costs and rearrangement costs. For a more general situation, a novel model of unequal-area dynamic facility layout problems is proposed on the basis of fuzzy random theory, in which uncertain demands are characterized by fuzzy random variables. Unequal-area dynamic facility layout problems are one of the non-deterministic polynomial-time hard problems. Therefore, a hybrid particle swarm optimization and simulated annealing algorithm is innovated to solve the proposed unequal-area dynamic facility layout problems model under fuzzy random environment, in which the shapes and areas of facilities are changed dynamically. Two facility-swapping methods and two local search methods help hybrid algorithm escape from local optima, allowing a more reliable solution. Moreover, a new shifting method is developed to prevent the spatial overlapping between adjacent facilities and save material handling costs. The performance of the hybrid algorithm is confirmed by some test problems available. Finally, the proposed method is extended to a facility layout planning of a new aircraft assembly shop floor. Computational results show that the efficiency and effectiveness of the proposed method, in sharp comparison with other approaches.


Sign in / Sign up

Export Citation Format

Share Document