Studies of Porous Silicon by Electron Microscopy

Author(s):  
A. G. Cullis
2010 ◽  
Vol 663-665 ◽  
pp. 1142-1145
Author(s):  
Yuan Ming Huang ◽  
Bao Gai Zhai ◽  
Qing Lan Ma ◽  
Ming Meng

During the chemical synthesis nanometer-sized particles of ferrous iron oxide were in situ infiltrated into the mesopores in a porous silicon film. The microstructures of porous silicon and the magnetic properties of the nanometer-sized particles of the ferrous iron oxide were characterized with scanning electron microscopy, X-ray diffractometry, and the hysteresis loop measurement, respectively. Our results have demonstrated that the magnetic properties of the nanometer-sized Fe3O4 particles can be dramatically modified when they are confined into the mesopores of the porous silicon film.


NANO ◽  
2016 ◽  
Vol 11 (07) ◽  
pp. 1650079 ◽  
Author(s):  
Wenjun Yan ◽  
Ming Hu ◽  
Jiran Liang ◽  
Dengfeng Wang ◽  
Yulong Wei ◽  
...  

A novel composite of Au-functionalized porous silicon (PS)/V2O5 nanorods (PS/V2O5:Au) was prepared to detect NO2 gas. PS/V2O5 nanorods were synthesized by a heating process of pure vanadium film on PS, and then the obtained PS/V2O5 nanorods were functionalized with dispersed Au nanoparticles. Various analytical techniques, such as field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), have been employed to investigate the properties of PS/V2O5:Au. Herein, the PS/V2O5:Au sample exhibited improved NO2-sensing performances in response, stability and selectivity at room temperature (25[Formula: see text]C), compared with the pure PS/V2O5 nanorods. These phenomena were closely related to not only the dispersed Au nanoparticles acting as a catalyst but also the p-n heterojunctions between PS and V2O5 nanorods. Whereas, more Au nanoparticles suppressed the improvement of response to NO2 gas.


1996 ◽  
Vol 276 (1-2) ◽  
pp. 204-207 ◽  
Author(s):  
G Amato ◽  
V Bullara ◽  
N Brunetto ◽  
L Boarino

1996 ◽  
Vol 457 ◽  
Author(s):  
I. Coulthard ◽  
T. K. Sham

ABSTRACTApart from its well known ability to luminesce very intensely at room temperature in the visible range, porous silicon is also an effective reducing agent. We report the formation of several noble metal (Pd, Ag, Au, Pt) nanostructures by reductive dispersion of metal ions from aqueous solutions onto the surface of porous silicon. The nanophase systems produced by reductive deposition vary with the element deposited and the metallic salt utilized in the process. The resulting nanophase systems were studied using a variety of techniques including: scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and spectroscopie methods using synchrotron radiation.


2010 ◽  
Vol 663-665 ◽  
pp. 393-396
Author(s):  
Fu Ru Zhong ◽  
Xiao Yi Lv ◽  
Zhen Hong Jia

We have investigated the morphology and photoluminescence (PL) of Zinc Oxide (ZnO) and Zinc sulphide (ZnS) compound grown on porous silicon at room temperature. Under different excitation wavelengths (320 nm, 340nm, 370 nm), the photoluminescence (PL) spectra of PS-ZnS-ZnO composites were different, and at 550nm there is a strong photoluminescence peak. Energy dispersive spectroscopy (EDS) has been carried out to evaluate the existing of ZnO/ZnS compound. In addition, the scanning electron microscopy (SEM) observation shows that the morphology of the PS-ZnS-ZnO composites was well grown on porous silicon.


2021 ◽  
Author(s):  
Shahlaa M. Abd Al-Hussan ◽  
Nabeel A. Bakr ◽  
Ahmed N. Abd

Abstract In this paper, electrochemical etching of the p-type silicon wafer is used to prepare p-type porous silicon with current density of 10 mA.cm− 2 for 10 minutes. Field Emission Scanning Electron Microscopy (FESEM) has been used to study porous silicon layer surface morphology. Zinc oxide and lithium oxide nanoparticles are prepared separately by chemical precipitation method and simple precipitation method, respectively and deposited on glass substrates by drop casting method. Moreover,, the structural properties of the films were analyzed by using XRD and SEM. The XRD results showed that the ZnO and Li2O films are polycrystalline with hexagonal wurtzite structure and cubic structure, and preferred orientation along (101) and (003) planes, respectively. Using Scherrer's formula, the crystallite size was measured and it was found that ZnO and Li2O thin films have a crystallite size of 22.04 and 45.6 nm respectively. Surface topography of the prepared thin films is studied by using Scanning Electron Microscopy (SEM). Later, certain proportions of both materials were mixed and deposited on porous silicon using drop casting method at thickness of 1.4 µm. After that, the characteristics of the solar cell were investigated. Mixing zinc oxide nanoparticles in particular proportions with lithium oxide played a major role in increasing the solar cell's performance. The highest prepared film efficiency was obtained at mixing ratio (0.5: 0.5) for (ZnO: Li2O) and its value was (11.09 %).


Sign in / Sign up

Export Citation Format

Share Document