Better Electrode Materials for Energy Storage Applications through Chemistry

Author(s):  
J.-M. Tarascon
Author(s):  
Linlin Liu ◽  
Zhen Ji ◽  
Shuyan Zhao ◽  
Qingyuan Niu ◽  
Songqi Hu

The delignified wood-based self-supporting carbon material is an ideal basic interdigital flexible electrode material, which has good application potential.


Nanoscale ◽  
2021 ◽  
Author(s):  
Hang Zhang ◽  
Xuemin Wang ◽  
Zhengzheng Li ◽  
Cui Zhang ◽  
Shuangxi Liu

Transition-metal selenides are capturing eminence as promising electrode materials for energy storage applications owing to their low electronegativity and environment-friendly compared with metal sulfides/oxides. Herein, a CuCoSe@NC nanocomposite with copper-cobalt...


Nanomaterials ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 1207 ◽  
Author(s):  
Gong ◽  
Gao ◽  
Hu ◽  
Zhou

Micro/nanostructured spherical materials have been widely explored for electrochemical energy storage due to their exceptional properties, which have also been summarized based on electrode type and material composition. The increased complexity of spherical structures has increased the feasibility of modulating their properties, thereby improving their performance compared with simple spherical structures. This paper comprehensively reviews the synthesis and electrochemical energy storage applications of micro/nanostructured spherical materials. After a brief classification, the concepts and syntheses of micro/nanostructured spherical materials are described in detail, which include hollow, core-shelled, yolk-shelled, double-shelled, and multi-shelled spheres. We then introduce strategies classified into hard-, soft-, and self-templating methods for synthesis of these spherical structures, and also include the concepts of synthetic methodologies. Thereafter, we discuss their applications as electrode materials for lithium-ion batteries and supercapacitors, and sulfur hosts for lithium–sulfur batteries. The superiority of multi-shelled hollow micro/nanospheres for electrochemical energy storage applications is particularly summarized. Subsequently, we conclude this review by presenting the challenges, development, highlights, and future directions of the micro/nanostructured spherical materials for electrochemical energy storage.


2014 ◽  
Vol 7 (4) ◽  
pp. 1250-1280 ◽  
Author(s):  
Marta Sevilla ◽  
Robert Mokaya

This review presents the state-of-the-art with respect to synthesis of activated carbons, and their use as electrode materials in supercapacitors and as hydrogen storage materials.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248142
Author(s):  
Jahidul Islam ◽  
Han Shao ◽  
Md. Mizanur Rahman Badal ◽  
Kafil M. Razeeb ◽  
Mamun Jamal

Multifunctional and low-cost electrode materials are desirable for the next-generation sensors and energy storage applications. This paper reports the use of pencil graphite as an electrode for dual applications that include the detection of free residual chlorine using electro-oxidation process and as an electrochemical energy storage cathode. The pencil graphite is transferred to cellulose paper by drawing ten times and applied for the detection of free residual chlorine, which shows a sensitivity of 27 μA mM-1 cm-2 with a limit of detection of 88.9 μM and linearity up to 7 mM. The sample matrix effect study for the commonly interfering ions such as NO3-, SO42-, CO32-, Cl-, HCO3- shows minimal impact on free residual chlorine detection. Pencil graphite then used after cyclic voltammogram treatment as a cathode in the aqueous Zn/Al-ion battery, showing an average discharge potential plateau of ~1.1 V, with a specific cathode capacity of ~54.1 mAh g-1 at a current of 55 mA g-1. It maintains ~95.8% of its initial efficiency after 100 cycles. Results obtained from the density functional theory calculation is consistent with the electro-oxidation process involved in the detection of free residual chlorine, as well as intercalation and de-intercalation behavior of Al3+ into the graphite layers of Zn/Al-ion battery. Therefore, pencil graphite due to its excellent electro-oxidation and conducting properties, can be successfully implemented as low cost, disposable and green material for both sensor and energy-storage applications.


Ionics ◽  
2021 ◽  
Author(s):  
Murat Ates ◽  
Achref Chebil ◽  
Ozan Yoruk ◽  
Chérif Dridi ◽  
Murat Turkyilmaz

Sign in / Sign up

Export Citation Format

Share Document