scholarly journals Pencil graphite as electrode platform for free chlorine sensors and energy storage devices

PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248142
Author(s):  
Jahidul Islam ◽  
Han Shao ◽  
Md. Mizanur Rahman Badal ◽  
Kafil M. Razeeb ◽  
Mamun Jamal

Multifunctional and low-cost electrode materials are desirable for the next-generation sensors and energy storage applications. This paper reports the use of pencil graphite as an electrode for dual applications that include the detection of free residual chlorine using electro-oxidation process and as an electrochemical energy storage cathode. The pencil graphite is transferred to cellulose paper by drawing ten times and applied for the detection of free residual chlorine, which shows a sensitivity of 27 μA mM-1 cm-2 with a limit of detection of 88.9 μM and linearity up to 7 mM. The sample matrix effect study for the commonly interfering ions such as NO3-, SO42-, CO32-, Cl-, HCO3- shows minimal impact on free residual chlorine detection. Pencil graphite then used after cyclic voltammogram treatment as a cathode in the aqueous Zn/Al-ion battery, showing an average discharge potential plateau of ~1.1 V, with a specific cathode capacity of ~54.1 mAh g-1 at a current of 55 mA g-1. It maintains ~95.8% of its initial efficiency after 100 cycles. Results obtained from the density functional theory calculation is consistent with the electro-oxidation process involved in the detection of free residual chlorine, as well as intercalation and de-intercalation behavior of Al3+ into the graphite layers of Zn/Al-ion battery. Therefore, pencil graphite due to its excellent electro-oxidation and conducting properties, can be successfully implemented as low cost, disposable and green material for both sensor and energy-storage applications.

Author(s):  
Linlin Liu ◽  
Zhen Ji ◽  
Shuyan Zhao ◽  
Qingyuan Niu ◽  
Songqi Hu

The delignified wood-based self-supporting carbon material is an ideal basic interdigital flexible electrode material, which has good application potential.


Nanoscale ◽  
2021 ◽  
Author(s):  
Hang Zhang ◽  
Xuemin Wang ◽  
Zhengzheng Li ◽  
Cui Zhang ◽  
Shuangxi Liu

Transition-metal selenides are capturing eminence as promising electrode materials for energy storage applications owing to their low electronegativity and environment-friendly compared with metal sulfides/oxides. Herein, a CuCoSe@NC nanocomposite with copper-cobalt...


Author(s):  
Yuxi Song ◽  
Kaiyue Zhang ◽  
Xiangrong Li ◽  
Chuanwei Yan ◽  
Qinghua Liu ◽  
...  

Aqueous all-iron flow battery is a promising alternative for large-scale energy storage applications due to low cost and high safety. However, inferior Fe plating/stripping reversibility and hydrolysis of Fe2+ at...


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Mario Urso ◽  
Giacomo Torrisi ◽  
Simona Boninelli ◽  
Corrado Bongiorno ◽  
Francesco Priolo ◽  
...  

2020 ◽  
Vol MA2020-01 (3) ◽  
pp. 500-500
Author(s):  
Xiaowen Zhan ◽  
Jeff F Bonnett ◽  
David Reed ◽  
Vincent Sprenkle ◽  
Guosheng Li

Molecules ◽  
2019 ◽  
Vol 24 (12) ◽  
pp. 2263 ◽  
Author(s):  
Xiaoning Wang ◽  
Dan Wu ◽  
Xinhui Song ◽  
Wei Du ◽  
Xiangjin Zhao ◽  
...  

Polyaniline has been widely used in high-performance pseudocapacitors, due to its low cost, easy synthesis, and high theoretical specific capacitance. However, the poor mechanical properties of polyaniline restrict its further development. Compared with polyaniline, functionalized carbon materials have excellent physical and chemical properties, such as porous structures, excellent specific surface area, good conductivity, and accessibility to active sites. However, it should not be neglected that the specific capacity of carbon materials is usually unsatisfactory. There is an effective strategy to combine carbon materials with polyaniline by a hybridization approach to achieve a positive synergistic effect. After that, the energy storage performance of carbon/polyaniline hybridization material has been significantly improved, making it a promising and important electrode material for supercapacitors. To date, significant progress has been made in the synthesis of various carbon/polyaniline binary composite electrode materials. In this review, the corresponding properties and applications of polyaniline and carbon hybrid materials in the energy storage field are briefly reviewed. According to the classification of different types of functionalized carbon materials, this article focuses on the recent progress in carbon/polyaniline hybrid materials, and further analyzes their corresponding properties to provide guidance for the design, synthesis, and component optimization for high-performance supercapacitors.


Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5558
Author(s):  
Dimitra Vernardou ◽  
Charalampos Drosos ◽  
Andreas Kafizas ◽  
Martyn E. Pemble ◽  
Emmanouel Koudoumas

The need for clean and efficient energy storage has become the center of attention due to the eminent global energy crisis and growing ecological concerns. A key component in this effort is the ultra-high performance battery, which will play a major role in the energy industry. To meet the demands in portable electronic devices, electric vehicles, and large-scale energy storage systems, it is necessary to prepare advanced batteries with high safety, fast charge ratios, and discharge capabilities at a low cost. Cathode materials play a significant role in determining the performance of batteries. Among the possible electrode materials is vanadium pentoxide, which will be discussed in this review, due to its low cost and high theoretical capacity. Additionally, aqueous electrolytes, which are environmentally safe, provide an alternative approach compared to organic media for safe, cost-effective, and scalable energy storage. In this review, we will reveal the industrial potential of competitive methods to grow cathodes with excellent stability and enhanced electrochemical performance in aqueous media and lay the foundation for the large-scale production of electrode materials.


2020 ◽  
Vol 4 (10) ◽  
pp. 5313-5326 ◽  
Author(s):  
S. Rajkumar ◽  
E. Elanthamilan ◽  
J. Princy Merlin ◽  
I. Jenisha Daisy Priscillal ◽  
I. Sharmila Lydia

The as-synthesized CuCo2O4/PANI nanocomposite has emerged as a new type of electrode material for energy storage applications due to its low cost and sustainable and high electrochemical performance.


Nanomaterials ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 1207 ◽  
Author(s):  
Gong ◽  
Gao ◽  
Hu ◽  
Zhou

Micro/nanostructured spherical materials have been widely explored for electrochemical energy storage due to their exceptional properties, which have also been summarized based on electrode type and material composition. The increased complexity of spherical structures has increased the feasibility of modulating their properties, thereby improving their performance compared with simple spherical structures. This paper comprehensively reviews the synthesis and electrochemical energy storage applications of micro/nanostructured spherical materials. After a brief classification, the concepts and syntheses of micro/nanostructured spherical materials are described in detail, which include hollow, core-shelled, yolk-shelled, double-shelled, and multi-shelled spheres. We then introduce strategies classified into hard-, soft-, and self-templating methods for synthesis of these spherical structures, and also include the concepts of synthetic methodologies. Thereafter, we discuss their applications as electrode materials for lithium-ion batteries and supercapacitors, and sulfur hosts for lithium–sulfur batteries. The superiority of multi-shelled hollow micro/nanospheres for electrochemical energy storage applications is particularly summarized. Subsequently, we conclude this review by presenting the challenges, development, highlights, and future directions of the micro/nanostructured spherical materials for electrochemical energy storage.


Sign in / Sign up

Export Citation Format

Share Document