Unsteady Flow and Turbulence in a Low Speed Axial Compressor

Author(s):  
A. Sentker ◽  
W. Riess
Author(s):  
Chunill Hah ◽  
Michael Hathaway ◽  
Joseph Katz

The primary focus of this paper is to investigate the effect of rotor tip gap size on how the rotor unsteady tip clearance flow structure changes in a low speed one and half stage axial compressor at near stall operation (for example, where maximum pressure rise is obtained). A Large Eddy Simulation (LES) is applied to calculate the unsteady flow field at this flow condition with both a small and a large tip gaps. The numerically obtained flow fields at the small clearance matches fairly well with the available initial measurements obtained at the Johns Hopkins University with 3-D unsteady PIV in an index-matched test facility which renders the compressor blades and casing optically transparent. With this setup, the unsteady velocity field in the entire flow domain, including the flow inside the tip gap, can be measured. The numerical results are also compared with previously published measurements in a low speed single stage compressor (Maerz et al. [2002]). The current study shows that, with the smaller rotor tip gap, the tip clearance vortex moves to the leading edge plane at near stall operating condition, creating a nearly circumferentially aligned vortex that persists around the entire rotor. On the other hand, with a large tip gap, the clearance vortex stays inside the blade passage at near stall operation. With the large tip gap, flow instability and related large pressure fluctuation at the leading edge are observed in this one and a half stage compressor. Detailed examination of the unsteady flow structure in this compressor stage reveals that the flow instability is due to shed vortices near the leading edge, and not due to a three-dimensional separation vortex originating from the suction side of the blade, which is commonly referred to during a spike-type stall inception. The entire tip clearance flow is highly unsteady. Many vortex structures in the tip clearance flow, including the sheet vortex system near the casing, interact with each other. The core tip clearance vortex, which is formed with the rotor tip gap flows near the leading edge, is also highly unsteady or intermittent due to pressure oscillations near the leading edge and varies from passage to passage. For the current compressor stage, the evidence does not seem to support that a classical vortex breakup occurs in any organized way, even with the large tip gap. Although wakes from the IGV influence the tip clearance flow in the rotor, the major characteristics of rotor tip clearance flows in isolated or single stage rotors are observed in this one and a half stage axial compressor.


Author(s):  
Mario Ku¨nzelmann ◽  
Ralf Mu¨ller ◽  
Ronald Mailach ◽  
Konrad Vogeler

This paper introduces a new test case for compressor aerodynamics. The dataset is provided for the Dresden four-stage Low-Speed Research Compressor (LSRC), which was put into operation in 1995. The compressor consists of four identical stages, which are preceded by an inlet guide vane. The data set will be provided for the reference blading of the compressor with cantilevered stator vanes. This blading was developed on the basis of the profiles of a middle stage of a high-pressure compressor of a jet engine. This paper makes available the blading geometry as well as a variety of flow field measurement results. This includes the compressor map, selected pressure distributions and other results of flow field measurements with conventional techniques (e.g. Pitot probes, 5-hole probes). Furthermore different aspects of blade row interactions were addressed in this compressor within recent years. The periodical unsteady flow field within a selected rotor blade row was investigated using Laser-Doppler-Anemometry. Further results on the unsteady profile pressures and profile boundary layers will be provided. Supplementary, numerical results will be compared to the experiments. Results are available for several stages of the compressor and different operating points. With this test case a unique database for the aerodynamics in a multistage axial compressor will be provided that can be used for the validation of numerical codes.


2011 ◽  
Vol 25 (6) ◽  
pp. 1501-1507 ◽  
Author(s):  
Hyung-Soo Lim ◽  
Hyo-Jo Bae ◽  
Young-Cheon Lim ◽  
Seung-Jin Song ◽  
Shin-Hyoung Kang ◽  
...  

Author(s):  
Ali Arshad ◽  
Qiushi Li ◽  
Simin Li ◽  
Tianyu Pan

Experimental investigations of the effect of inlet blade loading on the rotating stall inception process are carried out on a single-stage low-speed axial compressor. Temporal pressure signals from the six high response pressure transducers are used for the analysis. Pressure variations at the hub are especially recorded during the stall inception process. Inlet blade loading is altered by installing metallic meshed distortion screens at the rotor upstream. Three sets of experiments are performed for the comparison of results, i.e. uniform inlet flow, tip, and hub distortions, respectively. Regardless of the type of distortion introduced to the inflow, the compressor undergoes a performance drop, which is more severe in the hub distortion case. Under the uniform inlet flow condition, stall inception is caused by the modal type disturbance while the stall precursor switched to spike type due to the highly loaded blade tip. In the presence of high blade loading at the hub, spike disappeared and the compressor once again witnessed a modal type disturbance. Hub pressure fluctuations are observed throughout the process when the stall is caused by a modal wave while no disturbance is noticed at the hub in spike type stall inception. It is believed that the hub flow separation contributes to the modal type of stall inception phenomenon. Results are also supported by the recently developed signal processing techniques for the stall inception study.


Author(s):  
Matthias Rolfes ◽  
Martin Lange ◽  
Konrad Vogeler ◽  
Ronald Mailach

The demand of increasing pressure ratios for modern high pressure compressors leads to decreasing blade heights in the last stages. As tip clearances cannot be reduced to any amount and minimum values might be necessary for safety reasons, the tip clearance ratios of the last stages can reach values notably higher than current norms. This can be intensified by a compressor running in transient operations where thermal differences can lead to further growing clearances. For decades, the detrimental effects of large clearances on an axial compressor’s operating range and efficiency are known and investigated. The ability of circumferential casing grooves in the rotor casing to improve the compressor’s operating range has also been in the focus of research for many years. Their simplicity and ease of installation are one reason for their continuing popularity nowadays, where advanced methods to increase the operating range of an axial compressor are known. In a previous paper [1], three different circumferential groove casing treatments were investigated in a single stage environment in the Low Speed Axial Research Compressor at TU Dresden. One of these grooves was able to notably improve the operating range and the efficiency of the single stage compressor at very large rotor tip clearances (5% of chord length). In this paper, the results of tests with this particular groove type in a three stage environment in the Low Speed Axial Research Compressor are presented. Two different rotor tip clearance sizes of 1.2% and 5% of tip chord length were investigated. At the small tip clearance, the grooves are almost neutral. Only small reductions in total pressure ratio and efficiency compared to the solid wall can be observed. If the compressor runs with large tip clearances it notably benefits from the casing grooves. Both, total pressure and efficiency can be improved by the grooves in a similar extent as in single stage tests. Five-hole probe measurements and unsteady wall pressure measurements show the influence of the groove on the flow field. With the help of numerical investigations the different behavior of the grooves at the two tip clearance sizes will be discussed.


2007 ◽  
Vol 2007 (0) ◽  
pp. _G403-1_-_G403-4_
Author(s):  
Yasuhiro SHIBAMOTO ◽  
Noritaka NAKAMURA ◽  
Sho BONKOHARA ◽  
Ken-ichiro IWAKIRI ◽  
Satoshi GUNJISHIMA ◽  
...  

Author(s):  
Jichao Li ◽  
Feng Lin ◽  
Sichen Wang ◽  
Juan Du ◽  
Chaoqun Nie ◽  
...  

Circumferential single-groove casing treatment becomes an interesting topic in recent few years, because it is a good tool to explore the interaction between the groove and the flow in blade tip region. The stall margin improvement (SMI) as a function of the axial groove location has been found for some compressors, such a trend cannot be predicted by steady high-fidelity CFD simulations. Recent efforts show that to catch such a trend, multi-passage, unsteady flow simulations are needed as the stalling mechanism itself involves cross-passage flows and unsteady dynamics. This indicates a need to validate unsteady numerical simulation results. In this paper, an extensive experimental study of a total of fifteen single casing grooves in a low-speed axial compressor rotor is presented, the groove location varies from 0.4% to 98.3% of axial tip chord are tested. The unsteady pressure data both at casing and at the blade wake with different groove locations are measured and processed, including the movement of trajectory of tip leakage flow, the evolution of unsteadiness of tip leakage flow (UTLF), the unsteady spectrum signature during the stall process, and the outlet unsteady flow characteristic along the span. These data provide a case study for validation of the unsteady CFD results, and may be helpful for further interpretation on the stalling mechanism affected by circumferential casing grooves.


Sign in / Sign up

Export Citation Format

Share Document