Root response to CO2 enrichment and nitrogen supply in loblolly pine

Author(s):  
A. Larigauderie ◽  
J. F. Reynolds ◽  
B. R. Strain
1994 ◽  
Vol 165 (1) ◽  
pp. 21-32 ◽  
Author(s):  
A. Larigauderie ◽  
J. F. Reynolds ◽  
B. R. Strain

2010 ◽  
Vol 10 (2) ◽  
pp. 547-561 ◽  
Author(s):  
M. L. White ◽  
Y. Zhou ◽  
R. S. Russo ◽  
H. Mao ◽  
R. Talbot ◽  
...  

Abstract. Vegetation, soil and ecosystem level carbonyl sulfide (COS) exchange was observed at Duke Forest, a temperate loblolly pine forest, grown under ambient (Ring 1, R1) and elevated (Ring 2, R2) CO2. During calm meteorological conditions, ambient COS mixing ratios at the top of the forest canopy followed a distinct diurnal pattern in both CO2 growth regimes, with maximum COS mixing ratios during the day (R1=380±4 pptv and R2=373±3 pptv, daytime mean ± standard error) and minimums at night (R1=340±6 pptv and R2=346±5 pptv, nighttime mean ± standard error) reflecting a significant nighttime sink. Nocturnal vegetative uptake (−11 to −21 pmol m−2s−1, negative values indicate uptake from the atmosphere) dominated nighttime net ecosystem COS flux estimates (−10 to −30 pmol m−2s−1) in both CO2 regimes. In comparison, soil uptake (−0.8 to −1.7 pmol m−2 s−1) was a minor component of net ecosystem COS flux. In both CO2 regimes, loblolly pine trees exhibited substantial COS consumption overnight (50% of daytime rates) that was independent of CO2 assimilation. This suggests current estimates of the global vegetative COS sink, which assume that COS and CO2 are consumed simultaneously, may need to be reevaluated. Ambient COS mixing ratios, species specific diurnal patterns of stomatal conductance, temperature and canopy position were the major factors influencing the vegetative COS flux at the branch level. While variability in branch level vegetative COS consumption measurements in ambient and enhanced CO2 environments could not be attributed to CO2 enrichment effects, estimates of net ecosystem COS flux based on ambient canopy mixing ratio measurements suggest less nighttime uptake of COS in R2, the CO2 enriched environment.


1999 ◽  
Vol 19 (4-5) ◽  
pp. 279-287 ◽  
Author(s):  
J. Luan ◽  
Y. Luo ◽  
J. F. Reynolds

1984 ◽  
Vol 14 (3) ◽  
pp. 343-350 ◽  
Author(s):  
Leslie C. Tolley ◽  
B. R. Strain

Mathematical growth analysis techniques were used to assess the effects of atmospheric carbon dioxide enrichment on growth and biomass partitioning of Liquidambarstyraciflua L. (sweetgum) and Pinustaeda L. (loblolly pine) seedlings. Plants were grown from seed under high (1000 μmol•m−2•s−1) and low (250 μmol•m−2•s−1) photosynthetic photon flux density at CO2 concentrations of 350, 675, and 1000 μL•L−1 for 84 or 112–113 days. Elevated atmospheric CO2 concentration significantly increased height, leaf area, basal stem diameter, and total dry weight of sweetgum seedlings grown under high irradiance and to a lesser extent under low irradiance. Increases in dry matter accumulation were associated with early CO2 enhancement of net assimilation rate, but increases in amount of leaf surface area contributed more towards maintenance of larger size as seedlings aged. For sweetgum seedlings in particular, reduction of growth by low irradiance under normal atmospheric CO2 was compensated for by growing plants with elevated CO2. In contrast, elevated CO2 concentration produced no significant increase in growth of loblolly pine seedlings.


2018 ◽  
Vol 210 ◽  
pp. 70-77 ◽  
Author(s):  
Remy Manderscheid ◽  
Markus Dier ◽  
Martin Erbs ◽  
Jan Sickora ◽  
Hans-Joachim Weigel

1984 ◽  
Vol 62 (10) ◽  
pp. 2135-2139 ◽  
Author(s):  
Leslie C. Tolley ◽  
B. R. Strain

Mathematical growth analysis techniques were used to assess the possible interactive effects of atmospheric carbon dioxide enrichment and water stress on growth and biomass partitioning of Liquidambar styraciflua L. (sweetgum) and Pinus taeda L. (loblolly pine) seedlings. Plants were grown from seed under 1000 μmol∙m−2∙s−1 photosynthetic photon flux density at CO2 concentrations of 350, 675, and 1000 μL∙L−1 for 56 days. At this time, half the seedlings in each CO2 treatment had water withheld until plant water potentials reached about −2.5 MPa in the most stressed plants, while the remaining plants were well watered. At the end of the drying cycle, stressed plants were returned to well-watered conditions for a 14-day recovery period. The greatest effects of water stress on growth were seen following the recovery period and were most severe for sweetgum seedlings grown at the lowest CO2 concentration. For sweetgum seedlings in particular, the reduction of early seedling growth following exposure to a period of drought under normal atmospheric CO2 concentration was ameliorated by growing plants under elevated CO2, primarily because of maintenance of greater net assimilation rates following a period of stress. The data presented here suggest that a doubling of atmospheric CO2 concentration would enable sweetgum seedlings to become established in drier sites which are currently dominated by loblolly pine seedlings.


2008 ◽  
Vol 14 (6) ◽  
pp. 1252-1264 ◽  
Author(s):  
S. G. PRITCHARD ◽  
A. E. STRAND ◽  
M. L. McCORMACK ◽  
M. A. DAVIS ◽  
R. OREN

2007 ◽  
Vol 102 (2) ◽  
pp. 128-140 ◽  
Author(s):  
Lianxin Yang ◽  
Yulong Wang ◽  
Guichun Dong ◽  
Hui Gu ◽  
Jianye Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document