Soil Type and Forest Vegetation Influences on Forest Floor Nitrogen Dynamics at the Bear Brook Watershed in Maine (BBWM)

Author(s):  
Z. Wang ◽  
I. Fernandez
2009 ◽  
pp. 151-181 ◽  
Author(s):  
Sarah Watkinson ◽  
Dan Bebber ◽  
Peter Darrah ◽  
Mark Fricker ◽  
Monika Tlalka ◽  
...  

Author(s):  
Elena N. Nakvasina ◽  
◽  
Yuliya N. Shumilova ◽  

Carbon stocks were calculated in different components of bigeocenosis (soil, living ground cover, forest floor, undergrowth, underbrush and forest stand) using the example of a selected chronosequence of fallows (4 sample areas of different age, yrs: 16, 25, 63 and 130) in the Kargopol district of the Arkhangelsk region (middle taiga subzone, residual carbonate soils). The structure of carbon stocks of the forming plantations and its changes with the fallow age is estimated. It was found that a natural increase in carbon stocks and its redistribution between the soil and the forming phytocenosis occurs in the process of succession during the afforestation of arable lands. In plantations growing on young fallows, more than 86 % of the carbon stock is represented by carbon from the arable soil horizon. During the colonization of the fallow by forest vegetation the share of this pool decreases and already in the middle-aged 63-year-old forest it is 22 %, and in the mature 130-year-old forest it is only 7.6 %. In the structure of the total carbon stock in the middleaged plantation, the share of the stand reaches 69 %, and in the mature 130-year-old stand it is already 90 %. In plantations on young fallows, the structure of the main components of biogeocenosis (soil carbon, ground cover carbon and tree layer carbon) is characterized by a ratio of 9:1:0, whereas in plantations on old fallows of 63 and 130 years it is 2:0:8 and 1:0:9, respectively. The undergrowth and underbrush of the studied chronosequence are characterized by the small shares of carbon, which do not have a significant value in the structure of the ecosystem carbon pool. Forest floor in forming forest stands contributes significantly to the carbon structure of the biogeocenosis, although the total biogeocenosis carbon pool is 3–4 % and does not contribute to an increase in soil carbon stocks. In the system “soil – forest floor – living ground cover” the share of soil carbon decreases from 91 to 76–77 % with the increase in the age of plantation, while the share of formed forest floor in the middle-aged and mature forest is 16 and 20 %, respectively. In plantations on young fallows the ratio of these components of biogeocenosis is 9:0:1, whereas on old fallows it is 8:2:0. Leaving arable land on residual carbonate soils for self-overgrowth with forest vegetation and formation of forest plantations on them in the middle taiga subzone will lead to a gradual decrease in the carbon pool in the soil, but will contribute to the sequencing of carbon in the phytomass of perennial woody vegetation and in forest floor. These two components of biogeocenosis will serve as a sequenced carbon depot, supporting the biological cycle.


Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 42
Author(s):  
Kaitlyn E. Trepanier ◽  
Laura Manchola-Rojas ◽  
Bradley D. Pinno

Buried wood is an important but understudied component of reclamation soils. We examined the impacts of buried wood amounts and species on the growth of the common reclamation tree species trembling aspen (Populus tremuloides). In a greenhouse study, aspen seedlings were planted into four soil types, upland derived fine forest floor-mineral mix (fFFMM), coarse forest floor-mineral mix (cFFMM), and lowland derived peat and peat-mineral mix (PMM), that were mixed with either aspen or pine wood shavings at four concentrations (0%, 10%, 20% and 50% of total volume). Height and diameter growth, chlorophyll concentration, and leaf and stem biomass were measured. Soil nutrients and chemical properties were obtained from a parallel study. Buried wood primarily represents an input of carbon to the soil, increasing the C:N ratio, reducing the soil available nitrogen and potentially reducing plant growth. Soil type had the largest impact on aspen growth with fFFMM = peat > PMM > cFFMM. Buried wood type, i.e., aspen or pine, did not have an impact on aspen development, but the amount of buried wood did. In particular, there was an interaction between wood amount and soil type with a large reduction in aspen growth with wood additions of 10% and above on the more productive soils, but no reduction on the less productive soils.


Soil Science ◽  
1933 ◽  
Vol 36 (5) ◽  
pp. 387-398 ◽  
Author(s):  
F. J. ALWAY ◽  
JOSEPH KITTREDGE ◽  
W. J. METHLEY
Keyword(s):  

2017 ◽  
Vol 104 (3) ◽  
pp. 399-410 ◽  
Author(s):  
Christina M. Smith-Martin ◽  
Maria G. Gei ◽  
Ellie Bergstrom ◽  
Kristen K. Becklund ◽  
Justin M. Becknell ◽  
...  

1981 ◽  
Vol 11 (4) ◽  
pp. 743-751 ◽  
Author(s):  
M. G. Weber ◽  
K. Van Cleve

Low addition levels of high enrichment isotope (>1% of the total nitrogen pool with 99 at.% excess 15N) were used to follow nitrogen movement through selected forest floor components of permafrost-free and permafrost-dominated black spruce ecosystems in subarctic Alaska. The nitrogen pool examined in this study was the total nitrogen pool. 15N was retained most effectively by the feather moss layer (Pleuroziumschreberi (BSG.) Mitt. and Hylocomiumsplendens (Hedw.) BSG.) on both black spruce sites. Twenty-eight months after isotope application the feather moss layer still contained over 90% of the 15N that could be recovered. The limited movement of 15N between feather moss layers and underlying forest floor horizons appeared to be slightly affected by climatological events. Differences in 15N movement patterns between permafrost-free and permafrost-dominated black spruce sites are discussed in terms of precipitation, soil temperature, and biological controls.


Sign in / Sign up

Export Citation Format

Share Document