scholarly journals Long-Term Land Use Land Cover Change in Urban Centers of Southwest Ethiopia From a Climate Change Perspective

2020 ◽  
Vol 2 ◽  
Author(s):  
Tesfaye Dessu ◽  
Diriba Korecha ◽  
Debela Hunde ◽  
Adefires Worku

Long-term urban land use land cover change (LULCC) dynamics and climate change trends in Southwest Ethiopia's four urban centers were examined for 60 years. Remote sensing, aerial photos, and Landsat, temperature, and rainfall data were analyzed from a climate change perspective over the Jimma, Bedelle, Bonga, and Sokorru urban centers of southwest Ethiopia from 1953 to 2018. Based on geospatial analysis and maximum likelihood supervised image classification techniques to classify LULCC categories, the Mann-Kendall test was applied to perform trend analyses on temperature and rainfall. The LULCC analysis revealed that built-up areas over the urban centers had shown an increasing trend, with the highest increment by 2,360 hectares over Jimma, while vegetation, wetland, and cropland declined due to conversion of plain lands to built-up areas and other similar zones. The pronounced decline of vegetation coverage was 1,427, 185,116, and 32 hectares in Jimma, Bedelle, Bonga, and Sokorru, respectively. Mann-Kendall test results showed a significant sign of intra-seasonal and inter-annual variability of rainfall while the summer and annual rainfall patterns remained less variable compared to other seasons. This study's findings revealed that when the mean between the two climatic normals of 1953–86 is compared with 1987–2018, the temperature has significantly increased in the latter three decades. The rapid expansion of built-up areas coupled with a sharp decline of green space or vegetation and agricultural/croplands could lead to gradual changes in LULCC classes, which have contributed to the changing of the local climate, especially the surface temperature and rainfall over the urban centers of southwest Ethiopia. Therefore, we recommend that the local urban administrations emphasize sustainable urban development by integrating urban planning policies with land use to protect the environment by adopting local municipal adaptation and national climate change strategies. Restoration of the local environment and creation of climate-smart cities could be critical to the resilience of urban dwellers and ecosystems to the changing climate by enhancing grass-root climate services. To that end, we recommend further advanced research to understand how urban LULC-related changes and other factors contribute to local and regional climates, as urban areas of Southwest Ethiopia are undergoing a rapid transformation of their rural surroundings.

2013 ◽  
Vol 8 (1) ◽  
pp. 084596 ◽  
Author(s):  
Zhongchang Sun ◽  
Xinwu Li ◽  
Wenxue Fu ◽  
Yingkui Li ◽  
Dongsheng Tang

2019 ◽  
Vol 11 (24) ◽  
pp. 7083 ◽  
Author(s):  
Kristian Näschen ◽  
Bernd Diekkrüger ◽  
Mariele Evers ◽  
Britta Höllermann ◽  
Stefanie Steinbach ◽  
...  

Many parts of sub-Saharan Africa (SSA) are prone to land use and land cover change (LULCC). In many cases, natural systems are converted into agricultural land to feed the growing population. However, despite climate change being a major focus nowadays, the impacts of these conversions on water resources, which are essential for agricultural production, is still often neglected, jeopardizing the sustainability of the socio-ecological system. This study investigates historic land use/land cover (LULC) patterns as well as potential future LULCC and its effect on water quantities in a complex tropical catchment in Tanzania. It then compares the results using two climate change scenarios. The Land Change Modeler (LCM) is used to analyze and to project LULC patterns until 2030 and the Soil and Water Assessment Tool (SWAT) is utilized to simulate the water balance under various LULC conditions. Results show decreasing low flows by 6–8% for the LULC scenarios, whereas high flows increase by up to 84% for the combined LULC and climate change scenarios. The effect of climate change is stronger compared to the effect of LULCC, but also contains higher uncertainties. The effects of LULCC are more distinct, although crop specific effects show diverging effects on water balance components. This study develops a methodology for quantifying the impact of land use and climate change and therefore contributes to the sustainable management of the investigated catchment, as it shows the impact of environmental change on hydrological extremes (low flow and floods) and determines hot spots, which are critical for environmental development.


2018 ◽  
Vol 6 (4) ◽  
pp. 39-47 ◽  
Author(s):  
Firoz Ahmad ◽  
Md Meraj Uddin ◽  
Laxmi Goparaju

AbstractGeospatial evaluation of various datasets is extremely important because it gives a better comprehension of the past, present and future and can therefore be significantly utilized in effective decision making strategies. This study examined the relationships, using geospatial tools, between various diversified datasets such as land use/land cover (LULC), long term Normalized Difference Vegetation Index (NDVI) based changes, long term forest fire points, poverty percentage, tribal percentage, forest fire hotspots, climate change vulnerability, agricultural vulnerability and future (2030) climate change anomalies (RCP-6) of Jharkhand state, India, for a better understanding and knowledge of its vegetation health, LULC, poverty, tribal population and future climate change impact. The long term NDVI (1982-2006) evaluation revealed negative change trends in seven northwest districts of Jharkhand state, these were: Hazaribag, Ramgarh, Palamu, Lohardaga, Chatra, Garhwa and Latehar. The forests as well as the agriculture of these districts have lost their greenness during this period. The forest fire frequency events were found to be more pronounced in the land use/land cover of “tropical lowland forests, broadleaved, evergreen, <1000 m” category, and were roughly twice the intensity of the “tropical mixed deciduous and dry deciduous forests” category. In the nine districts of Jharkhand it was found that 40 % of the population was living below the poverty line which is around twice the national average. The highest poverty districts, in percentage, were: Garwah (53.93), Palamu (49.24), Latehar (47.99) and Chatra (46.2). The southwest and south of Jharkhand state shows a tribal population density of more than 40%. The climate change vulnerability was found to be highest in the district of Saraikela followed by Pashchim Singhbhum, whereas agricultural vulnerability was found to be highest in the district of Pashchim Singhbhum followed by Saraikela, Garhwa, Simdega, Latehar, Palamu and Lohardaga. The temperature anomalies prediction for the year 2030 shows an increasing trend in temperature with values of 0.8°C to 1°C in the state of Jharkhand. The highest increases were observed in the districts of Pashchim Singhbhum, Simdega and Saraikela. Based on these evaluations we can conclude that a few of the districts of Jharkhand, such as Pashchim Singhbhum, Garhwa, Palamu and Latehar need to be prioritized for development on an urgent basis. The outcomes of this study would certainly guide the policymakers to prepare more robust plans when keeping in mind the future climate change impacts for the prioritization of various districts of Jharkhand which suffer from extreme poverty, diminished livelihood and insignificant agricultural productivity for the betterment of the people of Jharkhand based on their adaptive capacity.


2022 ◽  
Author(s):  
TC Chakraborty ◽  
Yun Qian

Abstract Although the influence of land use/land cover change on climate has become increasingly apparent, cities and other built-up areas are usually ignored when estimating large-scale historical climate change or for future projections since cities cover a small fraction of the terrestrial land surface1,2. As such, ground-based observations of urban near-surface meteorology are rare and most earth system models do not represent historical or future urban land cover3–7. Here, by combining global satellite observations of land surface temperature with historical estimates of built-up area, we demonstrate that the urban temperature signal on continental- to regional-scale warming has become non-negligible, especially for rapidly urbanizing regions in Asia. Consequently, expected urban expansion over the next century suggest further increased urban influence on surface climate under all future climate scenarios. Based on these results, we argue that, in line with other forms of land use/land cover change, urbanization should be explicitly included in future climate change assessments. This would require extensive model development to incorporate urban extent and biophysics in current-generation earth system models to quantify potential urban feedbacks on the climate system at multiple scales.


2021 ◽  
Vol 4 (1) ◽  
pp. p97
Author(s):  
Bernard Tarza Tyubee

The study estimated annual and temporal variation in per capita Land Use/Land Cover Change (LULCC) in Makurdi, Northcentral Nigeria. A total of four Landsat TM/ETM+ images were acquired in April of 1991, 1996, 2001 and 2006 for the study. A total of five LULC types namely water, forest, undergrowth/wetland, cultivated land and built-up land were derived from the Landsat images using supervised classification method. The per capita LULCC was derived by dividing the areas of LULC types by the actual population data. The result showed that built-up land recorded the highest long-term gain in area by 179km2 (130%), with an increment of 8.7% per anum, and undergrowth/wetland lost 119km2 (32%) in area with a decrease of 2.1% per annum from 1991 to 2006. The per capita LULCC of built-up land has increased from 575m2/person (1991) to 1059m2/person (2006), representing an increment of 481m2/person (83%). The undergrowth/wetland recorded the highest decrease in per capita LULCC from 1542m2/person (1991) to 836m2/person (2006), representing a decline by 706m2/person (46%). The study concludes that undergrowth/wetland is the most vulnerable LULC type due to urbanisation, and sustainable urban planning should be practised to conserve the natural cover materials in the study area.


Sign in / Sign up

Export Citation Format

Share Document