Performance of All-Back-Contact Nanowire Solar Cell with a Nano-Crystalline Silicon Layer

Author(s):  
Rakesh K. Patnaik ◽  
Devi Prasad Pattnaik ◽  
Chayanika Bose
2011 ◽  
Vol 2011 ◽  
pp. 1-4 ◽  
Author(s):  
Hyukyong Kwon ◽  
Jaedoo Lee ◽  
Minjeong Kim ◽  
Soohong Lee

Solar cell is device that directly converts the energy of solar radiation to electrical energy. So it is important for solar cell to reduce the surface reflection of light in order to improve the efficiency of the device. Texturing and antireflection coating have been used to reduce the reflection of light. Texturing technology has reduced the 10% of incident light. However, there are a few disadvantages of random pyramid texturing that the results are not always reproducible in an industrial environment. And AR coating (MgF2, ZnS) is difficult to apply the standard industrial process because high vacuum is needed and the expense is very heavy. This paper investigates the formation of a thin film of porous silicon on the surface of crystalline silicon substrate without other AR coating layers. The formation of the porous silicon layer was measured with SEM (scanning electron microscopy). The formation of porous silicon layers on the textured silicon wafer resulted in lower than 5% of reflectance in the wavelength region from 400 to 1000 nm.


1995 ◽  
Vol 386 ◽  
Author(s):  
M. Konuma ◽  
I. Silier ◽  
A. Gutjahr ◽  
E. Bauser ◽  
F. Banhart ◽  
...  

ABSTRACTBy liquid phase epitaxy (LPE) we have grown silicon layers on silicon and partially masked silicon at temperatures below 450 °C from Ga and Ga-In solutions. Oxidation of the cleaned silicon substrate surfaces before epitaxial growth has been prevented by a buffered hydrofluoric acid treatment. The epitaxial layers reached a thickness of 7 jim and were free of extended defects.Low growth temperatures make it possible to grow silicon layers also on pre-treated glass substrates. The amorphous glass is first coated with a thin nano-crystalline silicon layer which is deposited by plasma processes from a mixture of SiH4/H2 gas. The grains in the silicon layers grown from Ga solution on glass have reached sizes up to 100 μm.


2012 ◽  
Vol 476-478 ◽  
pp. 1815-1819 ◽  
Author(s):  
Jing Wei Chen ◽  
Lei Zhao ◽  
Su Zhou ◽  
Hong Wei Diao ◽  
Ye Hua Tang ◽  
...  

Pyramidal texture is one traditional method to realize antireflection for c-Si solar cells, due to its low cost and simplicity. As one high efficiency silicon solar cell, amorphous/crystalline silicon heterojunction (SHJ) solar cell has attracted much attention all over the world. The heterojunction interface with very low defects and interface states is critical to the SHJ solar cell performance. In order to obtain high quality interface passivation by depositing a very thin intrinsic amorphous silicon layer on the textured Si conformally, large size pyramidal texture with no metal ion contamination is required. In this work, we utilized tetra-methyl ammonium hydroxide (TMAH) instead of NaOH in the alkaline etching to prepare pyramidal texture on N-type monocrystalline silicon to avoid the possible Na+ contamination. By optimizing the etching conditions, uniform large size pyramidal texture with pyramid size of about 10 μm was fabricated successfully. Furthermore, excellent antireflection performance was demonstrated on such textured Si surface. The average reflectance was lower than 10% in the visible and near infrared spectrum range. Such pyramidally textured Si wafers will be very suitable for SHJ solar cells.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Silvio Pierro ◽  
Andrea Scuto ◽  
Luca Valenti ◽  
Marina Foti ◽  
Anna Battaglia ◽  
...  

We study the electrical and the optical behavior of HIT solar cell by means of measurements and optoelectrical simulations by TCAD simulations. We compare the HIT solar cell with a conventional crystalline silicon solar cell to identify the strengths and weaknesses of the HIT technology. Results highlight different mechanisms of electrical and optical efficiency losses caused by the presence of the amorphous silicon layer. The higher resistivity of the a-Si layers implies a smaller distance between the metal lines that causes a higher shadowing. The worst optical coupling between the amorphous silicon and the antireflective coating implies a slight increase of reflectivity around the 600 nm wavelength.


2017 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhi-Quan Zhou ◽  
Fei Hu ◽  
Wen-Jie Zhou ◽  
Hong-Yan Chen ◽  
Lei Ma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document