Mechanism of Chemical Admixtures: Adsorption, Hydration and Rheology

Author(s):  
Yanrong Zhang
Keyword(s):  
2019 ◽  
Vol 57 (1) ◽  
pp. 98-101
Author(s):  
R. Tamaishi

2020 ◽  
Vol 58 (1) ◽  
pp. 75-77
Author(s):  
R. Tamaishi

2021 ◽  
Vol 13 (8) ◽  
pp. 4546
Author(s):  
Kaiyue Zhao ◽  
Peng Zhang ◽  
Bing Wang ◽  
Yupeng Tian ◽  
Shanbin Xue ◽  
...  

Cement-based materials prepared with activated water induced by a magnetic field or electric field represent a possible solution to environmental issues caused by the worldwide utilization of chemical admixtures. In this contribution, electric- and magnetic-activated water have been produced. The workability and mechanical properties of cement mortar prepared with this activated water have been investigated. The results indicate that the pH and absorbance (Abs) values of the water varied as the electric and magnetic field changed, and their values increased significantly, exhibiting improved activity compared with that of the untreated water. In addition, activated water still retains activity within 30 min of the resting time. The fluidity of the cement paste prepared with electric-activated water was significantly larger than that of the untreated paste. However, the level of improvement differed with the worst performance resulting from cement paste prepared with alternating voltage activated water. In terms of mechanical properties, both compressive strength and flexural strength obtained its maximum values at 280 mT with two processing cycles. The compressive strength increased 26% as the curing time increased from 7 days to 28 days and flexural strength increased by 31%. In addition, through the introduction of magnetic-activated water into cement mortar, the mechanical strength can be maintained without losing its workability when the amount of cement is reduced.


Author(s):  
Temitope Funmilayo Awolusi ◽  
Adebayo Olatunbosun Sojobi ◽  
Daniel O. Oguntayo ◽  
Olufunke O. Akinkurolere ◽  
B.O. Orogbade

Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3467
Author(s):  
Ankit Kothari ◽  
Karin Habermehl-Cwirzen ◽  
Hans Hedlund ◽  
Andrzej Cwirzen

Most of the currently used concretes are based on ordinary Portland cement (OPC) which results in a high carbon dioxide footprint and thus has a negative environmental impact. Replacing OPCs, partially or fully by ecological binders, i.e., supplementary cementitious materials (SCMs) or alternative binders, aims to decrease the carbon dioxide footprint. Both solutions introduced a number of technological problems, including their performance, when exposed to low, subfreezing temperatures during casting operations and the hardening stage. This review indicates that the present knowledge enables the production of OPC-based concretes at temperatures as low as −10 °C, without the need of any additional measures such as, e.g., heating. Conversely, composite cements containing SCMs or alkali-activated binders (AACs) showed mixed performances, ranging from inferior to superior in comparison with OPC. Most concretes based on composite cements require pre/post heat curing or only a short exposure to sub-zero temperatures. At the same time, certain alkali-activated systems performed very well even at −20 °C without the need for additional curing. Chemical admixtures developed for OPC do not always perform well in other binder systems. This review showed that there is only a limited knowledge on how chemical admixtures work in ecological concretes at low temperatures and how to accelerate the hydration rate of composite cements containing high amounts of SCMs or AACs, when these are cured at subfreezing temperatures.


1980 ◽  
Vol 7 (2) ◽  
pp. 256-263 ◽  
Author(s):  
M. A. Ward ◽  
S. M. Khalil ◽  
B. W. Langan

As the cost of energy and hence the cost of producing Portland cement increase, the question arises as to whether we are obtaining optimum performance from the admixtures we use. As an example, data are presented indicating that a significant improvement in strength and shrinkage can be achieved by optimizing the sulfate content of the cement for given cement–admixture combinations. It is shown that the optimum SO3 is clearly a function of the initial temperature of the concrete, particularly during the first 24 h after casting, a characteristic of considerable importance in hot weather concreting and steam curing of concrete products. It is recommended that more attention be directed towards optimizing the effectiveness of chemical admixtures in both the ready-mixed concrete and precast concrete industries.


2013 ◽  
Vol 5 (5) ◽  
pp. 530-535
Author(s):  
Lukas Venčkauskas ◽  
Mindaugas Daukšys

The conducted research has established a complex influenceand the impact of separate chemical admixtures of differentpurpose on the parameters of the porosity of hardened cementpaste such as open and closed porosity, the average size of poresand the rates of pore inequality. According to the parametersof the porosity of hardened cement paste, on the basis of A. E.Sheikin’s methodology, the number of freezing-thawing cycleswas predicted. This research used plasticizing, viscosity modifyingand antifoaming admixtures. It has been found that, when theamount of plasticizing admixture in cement paste (W/C–0.45) isconstant and makes 1.1% of the cement mass, and the amountof viscosity modifying and antifoaming the admixture increasesfrom 0.1 to 0.6% and from 0.05 to 0.3% respectively, the openporosity of hardened cement paste varies between 30.21% and31.06%, while closed porosity varies between 5.39% and 6.22%.When the amount of the plasticizing admixture in cement paste(W/C–0.45) exceeds 1.1% of the cement mass, the open porosityof hardened cement paste increases by 1.4 times and closedporosity decreases by 2.5 times. While adding 0.1% of the viscositymodifying admixture to cement paste, the open porosityof hardened cement paste is increased by 1.5 times and closedporosity decreases by 2.4 times. The amount of 0.05% of thecement mass of the antifoaming admixture results in the increasedopen porosity of hardened cement paste by 1.5 times and reducedclosed porosity by 3.5 times. Santrauka Tyrimo metu nustatyta kompleksinė bei atskirų skirtingos paskirties cheminių priedų įtaka cementinio akmens poringumo rodikliams – atvirajam ir uždarajam poringumui, vidutinio porų dydžio ir porų vienodumo rodikliams. Tyrimuose naudoti cheminiai priedai: plastifikuojantis, klampą modifikuojantis ir mišinyje susiformavusias oro poras suardantis priedas. Nustatyta, kad cemento tešloje (V/C – 0,45) esant pastoviam plastifikuojančio priedo kiekiui – 1,0 % cemento masės, klampą modifikuojančio priedo kiekiui kintant nuo 0,1 iki 0,6 %, o mišinyje susiformavusias oro poras suardančio priedo kiekiui kintant nuo 0,05 iki 0,3 %, cementinio akmens atvirasis poringumas svyruoja nuo 30,21 iki 31,06 %, o uždarasis – nuo 5,39 iki 6,22 %. Cemento tešloje viršijus plastifikuojančio priedo 1,1 % cemento masės, cementinio akmens atvirasis poringumas padidėja apie 1,4 karto, o uždarasis poringumas sumažėja apie 2,5 karto. Pridėjus į tešlą 0,1 % cemento masės klampą modifikuojančio priedo, cementinio akmens atvirasis poringumas padidėja apie 1,5 karto, uždarasis poringumas sumažėja apie 2,4 karto. Oro poras suardančio priedo kiekis 0,05 % cemento masės cementinio akmens atvirąjį poringumą padidina apie 1,5 karto, uždarąjį poringumą sumažina apie 3,5 karto.


2017 ◽  
Vol 16 (4) ◽  
pp. 227-239 ◽  
Author(s):  
Kubra Kunt ◽  
Fatma Dur ◽  
Meral Yildirim ◽  
Emek Moroydor Derun

1987 ◽  
Vol 113 ◽  
Author(s):  
V. H. Dodson

ABSTRACTIn practice, the amount of fly ash added to portland cement concrete varies depending upon the desired end properties of the concrete. Generally, when a given portland cement concrete is redesigned to include fly ash, between 10 and 50% of the cement is replaced by a volume of fly ash equal to that of the cement. Sometimes as much as twice the volume of the cement replaced, although 45.4 kg (100 lbs) of cement will only produce enough calcium hydroxide during its reaction with water to react with about 9 kg (20 lbs) of a typical fly ash. The combination of large amounts of certain fly ashes with small amounts of portland cement in concrete has been found to produce surprisingly high compressive strengths, which cannot be accounted for by the conventional “pozzolanic reaction”. Ratios of cement to fly ash as high as 1:15 by weight can produce compressive strengths of 20.7 MPa (3,000 psi) at I day and over 41.4 MPa (6,000 psi) at 28 days. Methods of identifying these “hyperactive” fly ashes along with some of the startling results, with and without chemical admixtures are described.


Sign in / Sign up

Export Citation Format

Share Document