Software Defect Prediction: A Comparison Between Artificial Neural Network and Support Vector Machine

Author(s):  
Ishani Arora ◽  
Anju Saha
Author(s):  
Olatunji B. L. ◽  
Olabiyisi S. O. ◽  
Oyeleye C. A. ◽  
Sanusi B. A. ◽  
Olowoye A. O. ◽  
...  

<span>Software testing is an activity to enable a system is bug free during execution process. The software bug prediction is one of the most encouraging exercises of the testing phase of the software improvement life cycle. In any case, in this paper, a framework was created to anticipate the modules that deformity inclined in order to be utilized to all the more likely organize software quality affirmation exertion. Genetic Algorithm was used to extract relevant features from the acquired datasets to eliminate the possibility of overfitting and the relevant features were classified to defective or otherwise modules using the Artificial Neural Network. The system was executed in MATLAB (R2018a) Runtime environment utilizing a statistical toolkit and the performance of the system was assessed dependent on the accuracy, precision, recall, and the f-score to check the effectiveness of the system. In the finish of the led explores, the outcome indicated that ECLIPSE JDT CORE, ECLIPSE PDE UI, EQUINOX FRAMEWORK and LUCENE has the accuracy, precision, recall and the f-score of 86.93, 53.49, 79.31 and 63.89% respectively, 83.28, 31.91, 45.45 and 37.50% respectively, 83.43, 57.69, 45.45 and 50.84% respectively and 91.30, 33.33, 50.00 and 40.00% respectively. This paper presents an improved software predictive system for the software defect detections.</span>


2020 ◽  
pp. 002029402096482
Author(s):  
Sulaiman Khan ◽  
Abdul Hafeez ◽  
Hazrat Ali ◽  
Shah Nazir ◽  
Anwar Hussain

This paper presents an efficient OCR system for the recognition of offline Pashto isolated characters. The lack of an appropriate dataset makes it challenging to match against a reference and perform recognition. This research work addresses this problem by developing a medium-size database that comprises 4488 samples of handwritten Pashto character; that can be further used for experimental purposes. In the proposed OCR system the recognition task is performed using convolution neural network. The performance analysis of the proposed OCR system is validated by comparing its results with artificial neural network and support vector machine based on zoning feature extraction technique. The results of the proposed experiments shows an accuracy of 56% for the support vector machine, 78% for artificial neural network, and 80.7% for the proposed OCR system. The high recognition rate shows that the OCR system based on convolution neural network performs best among the used techniques.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Tuan Vu Dinh ◽  
Hieu Nguyen ◽  
Xuan-Linh Tran ◽  
Nhat-Duc Hoang

Soil erosion induced by rainfall is a critical problem in many regions in the world, particularly in tropical areas where the annual rainfall amount often exceeds 2000 mm. Predicting soil erosion is a challenging task, subjecting to variation of soil characteristics, slope, vegetation cover, land management, and weather condition. Conventional models based on the mechanism of soil erosion processes generally provide good results but are time-consuming due to calibration and validation. The goal of this study is to develop a machine learning model based on support vector machine (SVM) for soil erosion prediction. The SVM serves as the main prediction machinery establishing a nonlinear function that maps considered influencing factors to accurate predictions. In addition, in order to improve the accuracy of the model, the history-based adaptive differential evolution with linear population size reduction and population-wide inertia term (L-SHADE-PWI) is employed to find an optimal set of parameters for SVM. Thus, the proposed method, named L-SHADE-PWI-SVM, is an integration of machine learning and metaheuristic optimization. For the purpose of training and testing the method, a dataset consisting of 236 samples of soil erosion in Northwest Vietnam is collected with 10 influencing factors. The training set includes 90% of the original dataset; the rest of the dataset is reserved for assessing the generalization capability of the model. The experimental results indicate that the newly developed L-SHADE-PWI-SVM method is a competitive soil erosion predictor with superior performance statistics. Most importantly, L-SHADE-PWI-SVM can achieve a high classification accuracy rate of 92%, which is much better than that of backpropagation artificial neural network (87%) and radial basis function artificial neural network (78%).


Sign in / Sign up

Export Citation Format

Share Document