scholarly journals Predicting Rainfall-Induced Soil Erosion Based on a Hybridization of Adaptive Differential Evolution and Support Vector Machine Classification

2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Tuan Vu Dinh ◽  
Hieu Nguyen ◽  
Xuan-Linh Tran ◽  
Nhat-Duc Hoang

Soil erosion induced by rainfall is a critical problem in many regions in the world, particularly in tropical areas where the annual rainfall amount often exceeds 2000 mm. Predicting soil erosion is a challenging task, subjecting to variation of soil characteristics, slope, vegetation cover, land management, and weather condition. Conventional models based on the mechanism of soil erosion processes generally provide good results but are time-consuming due to calibration and validation. The goal of this study is to develop a machine learning model based on support vector machine (SVM) for soil erosion prediction. The SVM serves as the main prediction machinery establishing a nonlinear function that maps considered influencing factors to accurate predictions. In addition, in order to improve the accuracy of the model, the history-based adaptive differential evolution with linear population size reduction and population-wide inertia term (L-SHADE-PWI) is employed to find an optimal set of parameters for SVM. Thus, the proposed method, named L-SHADE-PWI-SVM, is an integration of machine learning and metaheuristic optimization. For the purpose of training and testing the method, a dataset consisting of 236 samples of soil erosion in Northwest Vietnam is collected with 10 influencing factors. The training set includes 90% of the original dataset; the rest of the dataset is reserved for assessing the generalization capability of the model. The experimental results indicate that the newly developed L-SHADE-PWI-SVM method is a competitive soil erosion predictor with superior performance statistics. Most importantly, L-SHADE-PWI-SVM can achieve a high classification accuracy rate of 92%, which is much better than that of backpropagation artificial neural network (87%) and radial basis function artificial neural network (78%).

2021 ◽  
Vol 7 (3) ◽  
pp. 329
Author(s):  
Fitri Handayani

Penyakit jantung adalah salah satu penyakit yang menyebabkan resiko kematian cukup tinggi di dunia. Kolesterol, diabetes, tekanan darah tinggi merupakan faktor-faktor pemicu terjadinya penyakit jantung. Perlu deteksi sejak ini mengenai prediksi penyakit jantung pada setiap individu agar pencegahan dan pengobatan dapat segera dilakukan demi tingkat Kesehatan yang lebih baik. Berbagai metode dapat dilakukan untuk melakukan deteksi penyakit jantung, baik dengan metode tradisional dan metode yang memanfaatkan teknologi. Saat ini mulai banyak bermunculan system pendeteksi penyakit jantung dengan memanfaatkan algoritma machine learning. Algoritma machine learning dianggap mudah untuk diaplikasikan untuk mengklasifikasikan apakah seseorang terkena penyakit jantung. Penelitian ini mencoba melakukan klasifikasi penyakit jantung menggunakan dataset public dari UCI menggunakan tiga algorima machine learning, yaitu Support Vector Machine (SVM), Logistic Regression (LR) dan Artifiacial Neural Network (ANN). Ketiga algorima tersebut diuji menggunakan empat skenario pembagian data training dan testing yang berbeda, yaitu 90:10, 80:20, 70:40 dan 60:40. Dari hasil eksperimen didapatkan hasil akurasi tertinggi pada metode Logistic Regression sebesar 86% menggunakan skenario pembagian data 80:20.


Author(s):  
Nagendra Singh Ranawat ◽  
◽  
Pavan Kumar Kankar ◽  
Ankur Miglani ◽  
◽  
...  

Centrifugal pumps are commonly utilized in thermo-fluidic systems in the industry. Being a rotating machinery, they are prone to vibrations and their premature failure may affect the system predictability and reliability. To avoid their premature breakdown during operation, it is necessary to diagnose the faults in a pump at their initial stage. This study presents the methodology to diagnose fault of a cent rifugal pump using two distinct machine learning techniques, namely, Support vector machine (SVM) and Artificial neural network (ANN). Different statistical features are extracted in the time and the frequency domain of the vibration signal for different working conditions of the pump. Furthermore, to decrease the dimensionality of the obtained features different feature ranking (FR) methods, namely, Chi-square, ReliefF and XGBoost are employed. ANN technique is found to be more efficient in classifying faults in a centrifugal pump as compared to the SVM, and Chi-square and XGBoost ranking techniques are better than ReliefF at sorting more relevant features. The results presented in thus study demonstrate that an ANN based machine learning approach with Chi-square and XGBoost feature ranking techniques can be used effectively for the fault diagnosis of a centrifugal pump.


Author(s):  
M Vishnu Vardhana Rao, Et. al.

Nowadays, the Structural Building Health Damage Monitoring System (SBHDMS) is a crucial technology for predicting the civil building structures' health. SBHDMS contains abnormal changes in the buildings in terms of damage levels. Natural Disasters like Earthquakes, Floods, and cyclones affect the unusual changes in the buildings. If the building undergoes any natural disaster, the sensors capture the vibration data or change the buildings' structure. Due to the vibration data, these unusual changes can be analyzed. Here sensors or Machine Learning based Building Damage Prediction (MLBDP) are used for capturing and collecting the vibration data. This paper proposes a Novel Rough Set based Artificial Neural Network with Support Vector Machine (RAS) metaheuristic method. RAS method is used to predict the damaged building's vibration data levels captured by the sensors. For the feature reduction subset, we use one of the essential pre-processing method called the Rough set theory (RST) strategy. RAS has two contributions. The first one is the Support Vector Machine (SVM) classification method used for identifying the structures of the buildings. The artificial Neural Network (ANN) method used to predict the buildings' damage levels is the second contribution. The proposed method (RAS) is accurately predicting the conditions of the construction building structure and predicting the damage levels, without human intervention. Comparing the results states that the proposed method accuracy is better than SVM's classification methods, ANN. The prediction analysis depicts that the RAS method can effectively detect the damage levels.


Water ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 1020 ◽  
Author(s):  
Yong Kown ◽  
Seung Baek ◽  
Young Lim ◽  
JongCheol Pyo ◽  
Mayzonee Ligaray ◽  
...  

Harmful algal blooms have negatively affected the aquaculture industry and aquatic ecosystems globally. Remote sensing using satellite sensor systems has been applied on large spatial scales with high temporal resolutions for effective monitoring of harmful algal blooms in coastal waters. However, oceanic color satellites have limitations, such as low spatial resolution of sensor systems and the optical complexity of coastal waters. In this study, bands 1 to 4, obtained from Landsat-8 Operational Land Imager satellite images, were used to evaluate the performance of empirical ocean chlorophyll algorithms using machine learning techniques. Artificial neural network and support vector machine techniques were used to develop an optimal chlorophyll-a model. Four-band, four-band-ratio, and mixed reflectance datasets were tested to select the appropriate input dataset for estimating chlorophyll-a concentration using the two machine learning models. While the ocean chlorophyll algorithm application on Landsat-8 Operational Land Imager showed relatively low performance, the machine learning methods showed improved performance during both the training and validation steps. The artificial neural network and support vector machine demonstrated a similar level of prediction accuracy. Overall, the support vector machine showed slightly superior performance to that of the artificial neural network during the validation step. This study provides practical information about effective monitoring systems for coastal algal blooms.


2021 ◽  
Vol 49 (1) ◽  
pp. 23-34
Author(s):  
Mahdi Boroughani ◽  
Somayeh Soltani ◽  
Nafiseh Ghezelseflu ◽  
Iman Pazhouhan

Abstract Splash erosion, as the first step of soil erosion, causes the movement of the soil particles and lumps and is considered an important process in soil erosion. Given the complexity of this process in nature, one way of identifying and modeling the process is to use a rainfall simulator and to study it under laboratory circumstances. For this purpose, transported material was measured with various rainfall intensities and different amounts of poly-acryl-amide. In the next step, artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS), and support vector machine (SVM) were used to model the transported materials. The results showed that among the three methods, the best values of evaluation criteria were related to SVM, and ANFIS respectively. Among the three studied durations, the experiment with a duration of 30 minutes received the best results. The results based on available data showed by increasing the number of membership functions, over-fitting happens in the ANFIS method. To reduce the complexity of the model and the likelihood of over-fitting, some rules were eliminated. The results showed that the performance of the model improved by eliminating some rules.


2020 ◽  
pp. 002029402096482
Author(s):  
Sulaiman Khan ◽  
Abdul Hafeez ◽  
Hazrat Ali ◽  
Shah Nazir ◽  
Anwar Hussain

This paper presents an efficient OCR system for the recognition of offline Pashto isolated characters. The lack of an appropriate dataset makes it challenging to match against a reference and perform recognition. This research work addresses this problem by developing a medium-size database that comprises 4488 samples of handwritten Pashto character; that can be further used for experimental purposes. In the proposed OCR system the recognition task is performed using convolution neural network. The performance analysis of the proposed OCR system is validated by comparing its results with artificial neural network and support vector machine based on zoning feature extraction technique. The results of the proposed experiments shows an accuracy of 56% for the support vector machine, 78% for artificial neural network, and 80.7% for the proposed OCR system. The high recognition rate shows that the OCR system based on convolution neural network performs best among the used techniques.


Sign in / Sign up

Export Citation Format

Share Document