Production of Antioxidant and Oxidant Metabolites in Tomato Plants Infected with Verticillium dahliae Under Saline Conditions

Author(s):  
Murat Dikilitas ◽  
Nurcan Yucel ◽  
Sibel Dervis
Author(s):  
Edgar A. Chavarro‐Carrero ◽  
Jasper P. Vermeulen ◽  
David Torres ◽  
Toshiyuki Usami ◽  
Henk J. Schouten ◽  
...  

Author(s):  
Edgar A. Chavarro-Carrero ◽  
Jasper P. Vermeulen ◽  
David E. Torres ◽  
Toshiyuki Usami ◽  
Henk J. Schouten ◽  
...  

SUMMARYPlant pathogens secrete effector molecules during host invasion to promote host colonization. However, some of these effectors become recognized by host receptors, encoded by resistance genes, to mount defense response and establish immunity. Recently, a novel resistance was identified in tomato, mediated by the single dominant V2 locus, to control strains of the soil-borne vascular wilt fungus Verticillium dahliae that belong to race 2. We performed comparative genomics between race 2 strains and resistance-breaking race 3 strains to identify the avirulence effector that activates V2 resistance, termed Av2. We identified 277 kb of race 2-specific sequence comprising only two genes that encode predicted secreted proteins, both of which are expressed by V. dahliae during tomato colonization. Subsequent functional analysis based on genetic complementation into race 3 isolates confirmed that one of the two candidates encodes the avirulence effector Av2 that is recognized in V2 tomato plants. The identification of Av2 will not only be helpful to select tomato cultivars that are resistant to race 2 strains of V. dahliae, as the corresponding V2 resistance gene has not yet been mapped, but also to monitor adaptations in the V. dahliae population to deployment of V2-containing tomato cultivars in agriculture.


2012 ◽  
Author(s):  
Lugard Eboigbe

When Verticillium dahliae enters the host plant, the first line of defense that it encounters is the cell wall. Plant pathogenic fungi (including V. dahliae) produce extracellular enzymes which degrade plant cell wall components in a coordinated action. Some of the genes that encode these cell wall degrading enzymes, i.e., xylanases, cellulases and non-specific-action genes, were the major focus of this Ph.D. programme. Gene inactivation bears a remarkable model for the determination of the functions of genes in any organism. In this research, this molecular genetic tool has been applied to examine the functional role of β-1,6-endoglucanase and β-1,4-endoxylanase genes in the pathogenicity of filamentous fungus Verticillium dahliae. The gene coding for β-1,6-endoglucanase is considered as one of the important genes that code for hydrolyzing enzymes released at the initial stages of infection by fungi for the depolymerization of the cell wall. To address the hypothesis that these enzymes are important in V. dahliae virulence, a gene encoding a β-1,6-endoglucanase (vdg6) was isolated from V. dahliae using genome walking technique. Nucleotide sequence analysis of the 3’ and 5’ ends of clones from a genomic library of the fungus showed the presence of part of the endo-1,6-β-glucanase gene in a 3.5kb genomic fragment. Using this clone as probe and by employing genome walking approaches the 3’ and 5’; of the gene were determined bringing the entire gene (vdg6) size to ~1800 bp. An internal fragment (1.2kb) of vdg6 was used to disrupt the wild-type gene of the tomato race 2 V. dahliae strain 123V and the knock-out mutant (VdB) strain was tested for pathogenicity on tomato plants. The result showed a 7.5% reduction in disease symptoms caused on tomato plants in comparison with the wild type. Growth on minimal medium supplemented with different carbon sources showed reduced ability of the mutant to breakdown cellulose, whereas growth on glucose, pectin and sucrose were similar to the wild type. Endo-β-1,4-xylanase catalyze the endohydrolysis of xylan, the major structural polysaccharide of the plant cell wall. In order to investigate the role of the β-1,4-endoxylanase gene(xylA) in virulence of V. dahliae, through the analysis of clones from a genomic library of V. dahliae strain 76 and shotgun ESTs from xylem sap growing fungus the xylA gene was isolated. Its nucleotide sequence was determined and the predicted amino acid sequence showed significant homology with family 11 xylanases. The gene was disrupted by targeted inactivation due to a single cross-over event in a V. dahliae race 2 tomato strain. The knock-out mutant (XA) was compared with the wild type strain for disease symptoms on tomato plants. The result showed a small (7%) reduction in disease severity in the mutant strain. Growth of the mutant strain on minimal medium containing cellulose as the sole carbon source was reduced compared to the wild type indicating for a role of xylA in the breakdown of complex components of the cell wall. Other cell wall degrading genes cloned were β-1,3-exoglucanase, β-1,4-endoglucanse and endoglucanase II. The major obstacle to the determination of the genes involved in the depolymerisation of cell wall and pathogenicity is function redundancy. In an attempt to overcome the hurdle created by this function redundancy in analyzing the functions of the above genes, first, the regulation of vdg6 by sucrose non-fermenting gene (VdSNF1) was checked. The results showed that vdg6 gene is under catabolite repression, it is expressed during pathogencity and is important for the virulence of V. dahliae. Secondly, double disruption mutants were constructed from the single VdB mutant and the signalling PKA (cAMP-mediated protein kinase A) gene, namely VP1, VP2, VP3 and VP4. Analysis of these double mutants showed an obvious link between vdg6 gene and cAMP-mediated PKA (VdPKAC1) and that the β-1,6-endoglucanase cell wall degrading gene contributes to the pathogenicity of the fungus. In conclusion, all experimental evidence from this study showed that cell wall degrading genes contribute to virulence and pathogenicity of the fungus, however, since most of them belong to families of genes with similar functions the system is very complex to unravel and fully understand the genetic basis of pathogenicity.


2019 ◽  
Author(s):  
P. Sayago ◽  
F Juncosa ◽  
A. Albarracín Orio ◽  
M. Paccioretti ◽  
V. Gonzalez ◽  
...  

AbstractThe soil-borne fungal plant pathogen Verticillium dahliae can infect more than 300 plant species including important economic crops, causing great economic loses. V. dahliae can persist and survive more than 14 years in the soil by resistance structures, known as microsclerotia, which constitute the primary inoculum in the field. In vitro mass production of microsclerotia is essential for performing many pathological assays. Nevertheless to harvest the microsclerotia is not an easy task and several protocols have been described although none of them is completely satisfying for different reasons. here we present a new protocol that is reproducible, robust, simple and fast allows to overcome the difficulties for obtaining massive amounts of microsclerotia. In summary, we developed a new culture medium that we called Pluronic Potato Medium (PPM) because it is essentially potato dextrose media with the hydrogel, Pluronic F127 as a solidifying agent. The microsclerotia collected in form PPM were infectious in tomato plants were they were able to reproduce the disease and we recovered and quantitated V. dahliae in infected plants.


2015 ◽  
Vol 5 (1) ◽  
pp. 513-522
Author(s):  
Jean-Claude N'ZI ◽  
Lassina FONDIO ◽  
Mako Francois De Paul N’GBESSO ◽  
Andé Hortense DJIDJI ◽  
Christophe KOUAME

Thirty accessions of tomato including twenty eight introduced accessions from The World Vegetable Center-AVRDC and as controls, two commercial varieties Mongal and Calinago, were assessed for agronomic performances at the Experimentation and Production Station of Angud dou of the National Agronomic Research Centre (CNRA) located in the South of Cote d Ivoire. The trial was arranged in a randomized block with three replications. The following parameters were determined at vegetative development stage: plant height at flowering stage, susceptibility of accessions to diseases, day to 50% flowering and day of first harvest, production duration, fruit length, fruit diameter, total number of fruits, number of fruits per plant, potential yield, net yield and fruit damage rate. Results showed that the commercial variety Mongal, with a potential yield of 15.9 and a net yield of 13.1 t ha-1, was the most productive. All the introduced accessions from AVRDC recorded the lowest potential yields from 2.2 to 9.7 t ha-1, and net yields from 1.7 to 8.6 t ha-1. In addition, accessions WVCT8, FMTT847 and WVCT13 were severely infested by bacterial wilt. The reduction of the net yield of tomato accessions resulted in the high fruit damage rates. For the future tomato breeding work, it would be appropriate to introduce into the trials bacterial diseases tolerant varieties. Moreover, some studies could be undertaken to determine the nature of the bacteria involved in the plant wilting and to find out the causal agent of the tomato plants burning at the fructification stage reducing the harvest duration.


Author(s):  
M.N. AL-Rukabi ◽  
◽  
V.I. Leunov

Greenhouse tomatoes are divided into early, medium and late-maturing. The days from seedling germination to the first harvest are taken into account. Tomato has a huge potential for heterosis in terms of precocity, overall yield, signs of resistance and uniformity. The preferred agricultural method is hydroponics, which allows you to grow plants without using soil, only using mineral nutrient solutions in water. The cultivation of tomato plants on the " Fitopyramida " will allow to sell their products in the periods with the highest realized prices. An experiment on variety testing of 11 tomato hybrids of different product groups that differ in precocity allowed us to select the most adapted to the conditions of the " Fitopyramida " technology, including the indeterminate beef Ruddy ball F1, cherry hybrids Elf F1 and orange-fruited cherry Magic harp F1. the determinant hybrid Captain F1 showed Good results.


Author(s):  
A.A. Vypritskaya ◽  
◽  
A.A. Kuznetsov

Data on the prevalence in the Tambov region of the pathogen Verticillium dahliae Kleb (Verticillium dahliae) and the phytotoxicity of filtrates of the pathogen isolated from sunflower and a wild weed of the family of compound flowers (Xantium strumarium) are presented.


Sign in / Sign up

Export Citation Format

Share Document