Performance Analysis of DTN Routing Protocol for Vehicular Sensor Networks

Author(s):  
Ram Shringar Raw ◽  
Arushi Kadam ◽  
Loveleen
Author(s):  
Saloni Dhiman ◽  
Deepti Kakkar ◽  
Gurjot Kaur

Wireless sensor networks (WSNs) consist of several sensor nodes (SNs) that are powered by battery, so their lifetime is limited, which ultimately affects the lifespan and hence performance of the overall networks. Till now many techniques have been developed to solve this problem of WSN. Clustering is among the effective technique used for increasing the network lifespan. In this chapter, analysis of multi-hop routing protocol based on grid clustering with different selection criteria is presented. For analysis, the network is divided into equal-sized grids where each grid corresponds to a cluster and is assigned with a grid head (GH) responsible for collecting data from each SN belonging to respective grid and transferring it to the base station (BS) using multi-hop routing. The performance of the network has been analyzed for different position of BS, different number of grids, and different number of SNs.


2016 ◽  
Vol 2016 ◽  
pp. 1-17 ◽  
Author(s):  
Sheeraz Ahmed ◽  
Nadeem Javaid ◽  
Ashfaq Ahmad ◽  
Imran Ahmed ◽  
Mehr Yahya Durrani ◽  
...  

Reliability is a key factor for application-oriented Underwater Sensor Networks (UWSNs) which are utilized for gaining certain objectives and a demand always exists for efficient data routing mechanisms. Cooperative routing is a promising technique which utilizes the broadcast feature of wireless medium and forwards data with cooperation using sensor nodes as relays. Here, we present a cooperation-based routing protocol for underwater networks to enhance their performance called Stochastic Performance Analysis with Reliability and Cooperation (SPARCO). Cooperative communication is explored in order to design an energy-efficient routing scheme for UWSNs. Each node of the network is assumed to be consisting of a single omnidirectional antenna and multiple nodes cooperatively forward their transmissions taking advantage of spatial diversity to reduce energy consumption. Both multihop and single-hop schemes are exploited which contribute to lowering of path-losses present in the channels connecting nodes and forwarding of data. Simulations demonstrate that SPARCO protocol functions better regarding end-to-end delay, network lifetime, and energy consumption comparative to noncooperative routing protocol—improved Adaptive Mobility of Courier nodes in Threshold-optimized Depth-based routing (iAMCTD). The performance is also compared with three cooperation-based routing protocols for UWSN: Cognitive Cooperation (Cog-Coop), Cooperative Depth-Based Routing (CoDBR), and Cooperative Partner Node Selection Criteria for Cooperative Routing (Coop Re and dth).


2021 ◽  
Vol 13 (2) ◽  
pp. 467-481
Author(s):  
M. M. Hoque ◽  
M. G. Rashed ◽  
M. H. Kabir ◽  
A. F. M. Z. Abadin ◽  
M. I. Pramanik

In most of the cluster-based routing protocols for wireless sensor networks (WSNs), cluster heads (CHs) are selected from the normal sensors which may expire rapidly due to fast energy diminution for such an additional workload. As a consequence, the network lifetime of such cluster-based routing protocol reduces drastically. To resolve these constraints, in this study, we proposed a gateway-based routing protocol-namely Energy-Aware Gateway Based Routing Protocol (EAGBRP) for WSNs. In our proposed protocol, the deployed sensor nodes of a WSN were divided into five logical regions based on their location in the sensing field. The base station (BS) was installed out of the sensing area, and two gateway nodes were inaugurated at two predefined regions of the sensing area. The CH in each region is independent of the other regions and selected based on a weighted election probability. We implemented our proposed routing protocol through simulations. To evaluate the performance of our EAGBRP, we simulated SEP, M-GEAR, and MGBEHA (4GW) protocols. The network lifetime, throughput, and residual energy parameters are utilized for performance analysis. It is revealed from the performance analysis results that WSNs with EAGBRP achieve maximum network lifetime and throughput over other considered protocols with minimum energy consumption.


Sign in / Sign up

Export Citation Format

Share Document