Coral Disease in Japan

Author(s):  
Naohisa Wada ◽  
Aki Ohdera ◽  
Nobuhiro Mano
Keyword(s):  
PLoS ONE ◽  
2018 ◽  
Vol 13 (11) ◽  
pp. e0207078 ◽  
Author(s):  
L. J. Raymundo ◽  
W. Y. Licuanan ◽  
A. M. Kerr
Keyword(s):  

2014 ◽  
Vol 17 (4) ◽  
pp. 1203-1218 ◽  
Author(s):  
Nitzan Soffer ◽  
Jesse Zaneveld ◽  
Rebecca Vega Thurber

2017 ◽  
Vol 22 (4) ◽  
pp. 193
Author(s):  
I Gusti Bagus Siladharma ◽  
Widiastuti Karim

The widespread of coral disease may threatened Bali`s marine tourism which is the main asset for the nation prosperity. However, the disease prevalence is still unknown, in particular inshore coral reefs near to tourist spot areas. Therefore, the research aims to investigate the contribution of terrestrial runoff to coral disease prevalence and to examine the relationships between disease prevalence and environmental parameters (nitrate, phosphate, organic carbon and total suspended solids (TSS)) within the population of massive Porites on shallow north Bali reefs. Syndrome, diseases and healthy colonies of massive Porites coral were counted and noted within a 2 x 10 m belt transect at 3 sampling sites. The dominant disease observed was ulcerative white spots (UWS), while the syndromes were pigmentation response and aggressive overgrowth by macroalgae. The highest mean UWS prevalence was at site 3 which was the closest site to runoff (prevalence = 91%).This disease only affected one colony at site 1 and 2, respectively. Disease prevalence had strong relationship with TSS and nitrate, yet it showed weak relationship with phosphate and organic carbon. These results suggest that terrestrial runoff could contribute to the disease prevalence by increasing the TSS, nutrients and organic carbon loading to the inshore ecosystems. High level of organic carbon could severe the disease, particularly when combined with elevated TSS and nutrient, by reducing the coral`s immunity system. Keywords: coral disease, prevalence, terrestrial runoff, Porites, ulcerative white spot, environmental parameter, North Bali.


2012 ◽  
Vol 279 (1745) ◽  
pp. 4106-4114 ◽  
Author(s):  
C. V. Palmer ◽  
N. Traylor-Knowles

Reef-building corals form bio-diverse marine ecosystems of high societal and economic value, but are in significant decline globally due, in part, to rapid climatic changes. As immunity is a predictor of coral disease and thermal stress susceptibility, a comprehensive understanding of this new field will likely provide a mechanistic explanation for ecological-scale trends in reef declines. Recently, several strides within coral immunology document defence mechanisms that are consistent with those of both invertebrates and vertebrates, and which span the recognition, signalling and effector response phases of innate immunity. However, many of these studies remain discrete and unincorporated into the wider fields of invertebrate immunology or coral biology. To encourage the rapid development of coral immunology, we comprehensively synthesize the current understanding of the field in the context of general invertebrate immunology, and highlight fundamental gaps in our knowledge. We propose a framework for future research that we hope will stimulate directional studies in this emerging field and lead to the elucidation of an integrated network of coral immune mechanisms. Once established, we are optimistic that coral immunology can be effectively applied to pertinent ecological questions, improve current prediction tools and aid conservation efforts.


2017 ◽  
Vol 12 (1) ◽  
pp. 37
Author(s):  
Ofri Johan ◽  
Agus Budianto

Coral disease surveys were conducted in Bintan, Kepulauan Riau Province. The purpose was to identify the abundance of corals showing signs of Yellow Syndrome (YS) disease and to describe similar pathological signs to that of AYBD throughout Bintan District. Three belt transects (2 m x 50 m in size) were set up to determine the abundance of coral reef attacked by YS disease. Line intercept transects were used to determine the percentage of live corals in the surveyed areas. The survey showed that the YS disease syndrome attacked 8 different genera i.e. Acropora, Montipora, Porites, Pavona, Turbinaria, Favia, Platygyra, and Favites. The highest attack happened at Mapur Island (0.06 kol/m2) on Porites lutea, Turbinaria peltata, T. mesenterina, Acropora bruggemanni, and Pavona frondifera. The survey also indicated that there may have been at least two types of YS i.e. the first type caused by a boring and/or over-growing sponge species and the second type caused by a kind of pathogenic microbe. Regardless the causal agent of YS, the severity of YS attack on coral urged immediate action to be undertaken and should include initial microscopic and histology examinations. Based on this initial microscopic and histology examinations it was found out that YS bears a close resemblance to the Arabian Yellow Band Disease. This study, however, argued that the word “disease” may have been incorrectly used without identifying a specific causal agent.


2020 ◽  
Vol 141 ◽  
pp. 79-89
Author(s):  
MM Dennis ◽  
AAMJ Becker ◽  
MA Freeman

Disease is contributing to the decline of coral reefs globally, but the cause and pathogenesis of most coral diseases are poorly understood. Using Gorgonia ventalina and G. flabellum as a model for coral disease diagnosis, we histologically and microbiologically examined 45 biopsies of lesions resembling Gorgonia multifocal purple spots (MFPS) with the aim of forming a comprehensive case definition based on gross and microscopic morphologic descriptions and associated etiologies. Macroscopically, all lesions were small circular areas of purple pigmentation. Gross morphologies included pigmentation only (4/45, 9%), or pigmentation with branchlet expansion and fusion (19/45, 22%), sessile masses (17/45, 38%), or hard nodules (5/45, 9%). Histological morphologic diagnoses included amoebocyte encapsulation (9/45, 20%), coenenchymal amoebocytosis (6/45, 13%), melanin (17/45, 38%), and gorgonin deposition (13/45, 29%). Sixty-four percent of instances of fungi and 86% of labyrinthulomycetes were localized to grossly normal portions of the biopsy, whereas barnacles were only within lesions, and 87% of instances of algae and 82% of cyanobacteria were within lesioned area of the biopsy. Penicillium (n = 12) was the predominant genus of fungi isolated from biopsies. Barnacles were identified as Conopea sp. using molecular techniques. The pathology and etiology underlying MFPS lesions are diverse, consistent with a highly nonspecific lesion pattern rather than a specific disease. This study demonstrates the importance of microscopic examination of tissues for accurate classification of coral diseases and lesion patterns.


2018 ◽  
Author(s):  
Assaf R. Gavish ◽  
Orr H. Shapiro ◽  
Esti Kramarsky-Winter ◽  
Assaf Vardi

AbstractCoral disease is often studied at scales ranging from single colonies to the entire reef. This is particularly true for studies following disease progression through time. To gain a mechanistic understanding of key steps underlying infection dynamics, it is necessary to study disease progression, and host-pathogen interactions, at relevant microbial scales. Here we provide a dynamic view of the interaction between the model coral pathogen Vibrio coralliilyticus and its coral host Pocillopora damicornis at unprecedented spatial and temporal scales. This view is achieved using a novel microfluidics-based system specifically designed to allow microscopic study of coral infection in-vivo under controlled environmental conditions. Analysis of exudates continuously collected at the system’s outflow, allows a detailed biochemical and microbial analyses coupled to the microscopic observations of the disease progression. The resulting multilayered dataset provides the most detailed description of a coral infection to-date, revealing distinct pathogenic processes as well as the defensive behavior of the coral host. We provide evidence that infection in this system occurs following ingestion of the pathogen, and may then progress through the gastrovascular system. We further show infection may spread when pathogens colonize lesions in the host tissue. Copious spewing of pathogen-laden mucus from the polyp mouths results in effective expulsion of the pathogen from the gastrovascular system, possibly serving as a first line of defense. A secondary defense mechanism entails the severing of calicoblastic connective tissues resulting in the controlled isolation of diseased polyps, or the survival of individual polyps within infected colonies. Further investigations of coral-pathogen interactions at these scales will help to elucidate the complex interactions underlying coral disease, as we as the versatile adaptive response of the coral ecosystems to fluctuating environments.


2018 ◽  
Author(s):  
Luis M. Montilla ◽  
Alfredo Ascanio ◽  
Alejandra Verde ◽  
Aldo Croquer

AbstractCoral disease research encompasses five decades of undeniable progress. Since the first descriptions of anomalous signs, we have come to understand multiple processes and environmental drivers that interact with coral pathologies. To gain a better insight into the knowledge we already have, we explored how key topics in coral disease research have been related to each other using network analysis. We reviewed 719 papers and conference proceedings published from 1965 to 2017. From each study, four elements determined our network nodes: 1) studied disease(s); 2) host genus; 3) marine ecoregion(s) associated with the study site; and 4) research objectives. Basic properties of this network confirmed that there is a set of specific topics comprising the majority of research. The top five diseases, genera, and ecoregions studied accounted for over 48% of the research effort in all cases. The community structure analysis identified 15 clusters of topics with different degrees of overlap among them. These clusters represent the typical sets of elements that appear together for a given study. Our results show that while some coral diseases have been studied considering multiple aspects, the overall trend is for most diseases to be understood under a limited range of approaches, e.g. bacterial assemblages have been considerably studied in Yellow and Black band diseases while immune response has been better examined for the aspergillosis-Gorgonia system. Thus, our challenge in the near future is to identify and resolve potential gaps in order to achieve a more comprehensive progress on coral disease research.


Sign in / Sign up

Export Citation Format

Share Document