Biochar for Effective Cleaning of Contaminated Dumpsite Soil: A Sustainable and Cost-Effective Remediation Technique for Developing Nations

Author(s):  
Paromita Chakraborty ◽  
Moitraiyee Mukhopadhyay ◽  
R. Shruthi ◽  
Debayan Mazumdar ◽  
Daniel Snow ◽  
...  
2011 ◽  
Vol 47 (4) ◽  
pp. 663-684 ◽  
Author(s):  
Kirk Woellert ◽  
Pascale Ehrenfreund ◽  
Antonio J. Ricco ◽  
Henry Hertzfeld

Agriculture ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 475
Author(s):  
Mohammad Nishat Akhtar ◽  
Abdurrahman Javid Shaikh ◽  
Ambareen Khan ◽  
Habib Awais ◽  
Elmi Abu Bakar ◽  
...  

With the implementation of the Internet of Things, the agricultural domain has become data-driven, allowing for well-timed and cost-effective farm management while remaining environmentally sustainable. Thus, the incorporation of Internet of Things in the agricultural domain is the need of the hour for developing countries whose gross domestic product primarily depends on the farming sector. It is worth highlighting that developing nations lack the infrastructure for precision agriculture; therefore, it has become necessary to come up with a methodological paradigm which can accommodate a complete model to connect ground sensors to the compute nodes in a cost-effective way by keeping the data processing limitations and constraints in consideration. In this regard, this review puts forward an overview of the state-of-the-art technologies deployed in precision agriculture for soil assessment and pollutant monitoring with respect to heavy metal in agricultural soil using various sensors. Secondly, this manuscript illustrates the processing of data generated from the sensors. In this regard, an optimized method of data processing derived from cloud computing has been shown, which is called edge computing. In addition to this, a new model of high-performance-based edge computing is also shown for efficient offloading of data with smooth workflow optimization. In a nutshell, this manuscript aims to open a new corridor for the farming sector in developing nations by tackling challenges and providing substantial consideration.


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 460B-460
Author(s):  
W.H. Tietjen ◽  
J. Grande ◽  
P.J. Nitzsche ◽  
T. Manning ◽  
E. Dager

Remote areas of the United States and developing nations depend on either electric grid extension or diesel power for operating crop irrigation systems. However, electric grid extension is expensive and often impractical. Diesel pumps are expensive, polluting, and require maintenance to operate. Utilizing the energy of the sun, captured by photovoltaic panels, to power irrigation systems offers a cost-effective, pollution-free, and maintenance-free alternative. Solar-powered pumping systems are capable of delivering water from rivers or wells in volumes up to 2000 gal/min. Combining solar power with drip irrigation takes advantage of the natural coincidence of peak energy from the sun and the crop's peak need for water. In 1999, cabbage was grown comparing solar and conventionally powered drip irrigation systems at the Rutgers Univ. Snyder Research and Extension Farm, Pittstown, N.J. The solar system was operated by a 1.5-horsepower motor powered by 18 solar modules.


Author(s):  
Lawrence M. Roth

The female reproductive tract may be the site of a wide variety of benign and malignant tumors, as well as non-neoplastic tumor-like conditions, most of which can be diagnosed by light microscopic examination including special stains and more recently immunoperoxidase techniques. Nevertheless there are situations where ultrastructural examination can contribute substantially to an accurate and specific diagnosis. It is my opinion that electron microscopy can be of greatest benefit and is most cost effective when applied in conjunction with other methodologies. Thus, I have developed an approach which has proved useful for me and may have benefit for others. In cases where it is deemed of potential value, glutaraldehyde-fixed material is obtained at the time of frozen section or otherwise at operation. Coordination with the gynecologic oncologist is required in the latter situation. This material is processed and blocked and is available if a future need arises.


Author(s):  
James F. Mancuso

IBM PC compatible computers are widely used in microscopy for applications ranging from control to image acquisition and analysis. The choice of IBM-PC based systems over competing computer platforms can be based on technical merit alone or on a number of factors relating to economics, availability of peripherals, management dictum, or simple personal preference.IBM-PC got a strong “head start” by first dominating clerical, document processing and financial applications. The use of these computers spilled into the laboratory where the DOS based IBM-PC replaced mini-computers. Compared to minicomputer, the PC provided a more for cost-effective platform for applications in numerical analysis, engineering and design, instrument control, image acquisition and image processing. In addition, the sitewide use of a common PC platform could reduce the cost of training and support services relative to cases where many different computer platforms were used. This could be especially true for the microscopists who must use computers in both the laboratory and the office.


Sign in / Sign up

Export Citation Format

Share Document