Cross Talk Between Phytohormone Signaling Pathways Under Abiotic Stress Conditions and Their Metabolic Engineering for Conferring Abiotic Stress Tolerance

Author(s):  
Sheezan Rasool ◽  
Uneeb Urwat ◽  
Muslima Nazir ◽  
Sajad Majeed Zargar ◽  
M. Y. Zargar
2021 ◽  
Vol 22 (13) ◽  
pp. 7235
Author(s):  
Md. Tahjib-Ul-Arif ◽  
Mst. Ishrat Zahan ◽  
Md. Masudul Karim ◽  
Shahin Imran ◽  
Charles T. Hunter ◽  
...  

Several recent studies have shown that citric acid/citrate (CA) can confer abiotic stress tolerance to plants. Exogenous CA application leads to improved growth and yield in crop plants under various abiotic stress conditions. Improved physiological outcomes are associated with higher photosynthetic rates, reduced reactive oxygen species, and better osmoregulation. Application of CA also induces antioxidant defense systems, promotes increased chlorophyll content, and affects secondary metabolism to limit plant growth restrictions under stress. In particular, CA has a major impact on relieving heavy metal stress by promoting precipitation, chelation, and sequestration of metal ions. This review summarizes the mechanisms that mediate CA-regulated changes in plants, primarily CA’s involvement in the control of physiological and molecular processes in plants under abiotic stress conditions. We also review genetic engineering strategies for CA-mediated abiotic stress tolerance. Finally, we propose a model to explain how CA’s position in complex metabolic networks involving the biosynthesis of phytohormones, amino acids, signaling molecules, and other secondary metabolites could explain some of its abiotic stress-ameliorating properties. This review summarizes our current understanding of CA-mediated abiotic stress tolerance and highlights areas where additional research is needed.


2016 ◽  
Vol 4 (3) ◽  
pp. 162-176 ◽  
Author(s):  
Shabir H. Wani ◽  
Vinay Kumar ◽  
Varsha Shriram ◽  
Saroj Kumar Sah

2019 ◽  
Vol 20 (21) ◽  
pp. 5298 ◽  
Author(s):  
Atif ◽  
Shahid ◽  
Waqas ◽  
Ali ◽  
Rashid ◽  
...  

Abiotic stresses are the major limiting factors influencing the growth and productivity of plants species. To combat these stresses, plants can modify numerous physiological, biochemical, and molecular processes through cellular and subcellular signaling pathways. Calcium-dependent protein kinases (CDPKs or CPKs) are the unique and key calcium-binding proteins, which act as a sensor for the increase and decrease in the calcium (Ca) concentrations. These Ca flux signals are decrypted and interpreted into the phosphorylation events, which are crucial for signal transduction processes. Several functional and expression studies of different CPKs and their encoding genes validated their versatile role for abiotic stress tolerance in plants. CPKs are indispensable for modulating abiotic stress tolerance through activation and regulation of several genes, transcription factors, enzymes, and ion channels. CPKs have been involved in supporting plant adaptation under drought, salinity, and heat and cold stress environments. Diverse functions of plant CPKs have been reported against various abiotic stresses in numerous research studies. In this review, we have described the evaluated functions of plant CPKs against various abiotic stresses and their role in stress response signaling pathways.


Sign in / Sign up

Export Citation Format

Share Document