Transcriptomics of Arsenic Tolerance in Plants

Author(s):  
Kinga Kłodawska ◽  
Monika Bojko ◽  
Dariusz Latowski
Keyword(s):  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sheng-Kai Sun ◽  
Xuejie Xu ◽  
Zhong Tang ◽  
Zhu Tang ◽  
Xin-Yuan Huang ◽  
...  

AbstractRice grains typically contain high levels of toxic arsenic but low levels of the essential micronutrient selenium. Anthropogenic arsenic contamination of paddy soils exacerbates arsenic toxicity in rice crops resulting in substantial yield losses. Here, we report the identification of the gain-of-function arsenite tolerant 1 (astol1) mutant of rice that benefits from enhanced sulfur and selenium assimilation, arsenic tolerance, and decreased arsenic accumulation in grains. The astol1 mutation promotes the physical interaction of the chloroplast-localized O-acetylserine (thiol) lyase protein with its interaction partner serine-acetyltransferase in the cysteine synthase complex. Activation of the serine-acetyltransferase in this complex promotes the uptake of sulfate and selenium and enhances the production of cysteine, glutathione, and phytochelatins, resulting in increased tolerance and decreased translocation of arsenic to grains. Our findings uncover the pivotal sensing-function of the cysteine synthase complex in plastids for optimizing stress resilience and grain quality by regulating a fundamental macronutrient assimilation pathway.


2004 ◽  
Vol 45 (12) ◽  
pp. 1787-1797 ◽  
Author(s):  
Yujing Li ◽  
Om Parkash Dhankher ◽  
Laura Carreira ◽  
David Lee ◽  
Alice Chen ◽  
...  

2015 ◽  
Vol 36 (6) ◽  
pp. 913-922 ◽  
Author(s):  
Nallani Vijay Kumar ◽  
Jianbo Yang ◽  
Jitesh K. Pillai ◽  
Swati Rawat ◽  
Carlos Solano ◽  
...  

The AP-1-like transcription factor Yap8 is critical for arsenic tolerance in the yeastSaccharomyces cerevisiae. However, the mechanism by which Yap8 senses the presence of arsenic and activates transcription of detoxification genes is unknown. Here we demonstrate that Yap8 directly binds to trivalent arsenite [As(III)]in vitroandin vivoand that approximately one As(III) molecule is bound per molecule of Yap8. As(III) is coordinated by three sulfur atoms in purified Yap8, and our genetic and biochemical data identify the cysteine residues that form the binding site as Cys132, Cys137, and Cys274. As(III) binding by Yap8 does not require an additional yeast protein, and Yap8 is regulated neither at the level of localization nor at the level of DNA binding. Instead, our data are consistent with a model in which a DNA-bound form of Yap8 acts directly as an As(III) sensor. Binding of As(III) to Yap8 triggers a conformational change that in turn brings about a transcriptional response. Thus, As(III) binding to Yap8 acts as a molecular switch that converts inactive Yap8 into an active transcriptional regulator. This is the first report to demonstrate how a eukaryotic protein couples arsenic sensing to transcriptional activation.


2010 ◽  
Vol 22 (6) ◽  
pp. 2045-2057 ◽  
Author(s):  
Emily Indriolo ◽  
GunNam Na ◽  
Danielle Ellis ◽  
David E. Salt ◽  
Jo Ann Banks

2021 ◽  
pp. 118475
Author(s):  
Golam Jalal Ahammed ◽  
Youxin Yang
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document