scholarly journals Arsenic Directly Binds to and Activates the Yeast AP-1-Like Transcription Factor Yap8

2015 ◽  
Vol 36 (6) ◽  
pp. 913-922 ◽  
Author(s):  
Nallani Vijay Kumar ◽  
Jianbo Yang ◽  
Jitesh K. Pillai ◽  
Swati Rawat ◽  
Carlos Solano ◽  
...  

The AP-1-like transcription factor Yap8 is critical for arsenic tolerance in the yeastSaccharomyces cerevisiae. However, the mechanism by which Yap8 senses the presence of arsenic and activates transcription of detoxification genes is unknown. Here we demonstrate that Yap8 directly binds to trivalent arsenite [As(III)]in vitroandin vivoand that approximately one As(III) molecule is bound per molecule of Yap8. As(III) is coordinated by three sulfur atoms in purified Yap8, and our genetic and biochemical data identify the cysteine residues that form the binding site as Cys132, Cys137, and Cys274. As(III) binding by Yap8 does not require an additional yeast protein, and Yap8 is regulated neither at the level of localization nor at the level of DNA binding. Instead, our data are consistent with a model in which a DNA-bound form of Yap8 acts directly as an As(III) sensor. Binding of As(III) to Yap8 triggers a conformational change that in turn brings about a transcriptional response. Thus, As(III) binding to Yap8 acts as a molecular switch that converts inactive Yap8 into an active transcriptional regulator. This is the first report to demonstrate how a eukaryotic protein couples arsenic sensing to transcriptional activation.

mBio ◽  
2014 ◽  
Vol 5 (5) ◽  
Author(s):  
Igor Zwir ◽  
Won-Sik Yeo ◽  
Dongwoo Shin ◽  
Tammy Latifi ◽  
Henry Huang ◽  
...  

ABSTRACTThe histone-like nucleoid-structuring (H-NS) protein binds to horizontally acquired genes in the bacteriumSalmonella entericaserovar Typhimurium, silencing their expression. We now report that overcoming the silencing effects of H-NS imposes a delay in the expression of genes activated by the transcriptional regulator PhoP. We determine that PhoP-activated genes ancestral toSalmonellaare expressed before those acquired horizontally. This expression timing reflects thein vivooccupancy of the corresponding promoters by the PhoP protein. These results are surprising because some of these horizontally acquired genes reached higher mRNA levels than ancestral genes expressed earlier and were transcribed from promoters harboring PhoP-binding sites with higherin vitroaffinity for the PhoP protein. Our findings challenge the often-made assumption that for genes coregulated by a given transcription factor, early genes are transcribed to higher mRNA levels than those transcribed at later times. Moreover, they provide a singular example of how gene ancestry can impact expression timing.IMPORTANCEWe report that gene ancestry dictates the expression behavior of genes under the direct control of theSalmonellatranscriptional regulator PhoP. That is, ancestral genes are transcribed before horizontally acquired genes. This reflects both the need to overcome silencing by the H-NS protein of the latter genes and the architecture of the corresponding promoters. Unexpectedly, transcription levels do not reflect transcription timing. Our results illustrate how a bacterium can exhibit an elaborate temporal expression behavior among genes coregulated by a transcription factor even though the products encoded by the target genes do not participate in a morphological or developmental pathway.


2005 ◽  
Vol 83 (4) ◽  
pp. 535-547 ◽  
Author(s):  
Gareth N Corry ◽  
D Alan Underhill

To date, the majority of the research regarding eukaryotic transcription factors has focused on characterizing their function primarily through in vitro methods. These studies have revealed that transcription factors are essentially modular structures, containing separate regions that participate in such activities as DNA binding, protein–protein interaction, and transcriptional activation or repression. To fully comprehend the behavior of a given transcription factor, however, these domains must be analyzed in the context of the entire protein, and in certain cases the context of a multiprotein complex. Furthermore, it must be appreciated that transcription factors function in the nucleus, where they must contend with a variety of factors, including the nuclear architecture, chromatin domains, chromosome territories, and cell-cycle-associated processes. Recent examinations of transcription factors in the nucleus have clarified the behavior of these proteins in vivo and have increased our understanding of how gene expression is regulated in eukaryotes. Here, we review the current knowledge regarding sequence-specific transcription factor compartmentalization within the nucleus and discuss its impact on the regulation of such processes as activation or repression of gene expression and interaction with coregulatory factors.Key words: transcription, subnuclear localization, chromatin, gene expression, nuclear architecture.


2013 ◽  
Vol 57 (9) ◽  
pp. 4470-4480 ◽  
Author(s):  
Min Jung Kwun ◽  
Gabriela Novotna ◽  
Andrew R. Hesketh ◽  
Lionel Hill ◽  
Hee-Jeon Hong

ABSTRACTVanRS two-component regulatory systems are key elements required for the transcriptional activation of inducible vancomycin resistance genes in bacteria, but the precise nature of the ligand signal that activates these systems has remained undefined. Using the resistance system inStreptomyces coelicoloras a model, we have undertaken a series ofin vivostudies which indicate that the VanS sensor kinase in VanB-type resistance systems is activated by vancomycin in complex with thed-alanyl-d-alanine (d-Ala-d-Ala) termini of cell wall peptidoglycan (PG) precursors. Complementation of an essentiald-Ala-d-Ala ligase activity by constitutive expression ofvanAencoding a bifunctionald-Ala-d-Ala andd-alanyl-d-lactate (d-Ala-d-Lac) ligase activity allowed construction of strains that synthesized variable amounts of PG precursors containingd-Ala-d-Ala. Assays quantifying the expression of genes under VanRS control showed that the response to vancomycin in these strains correlated with the abundance ofd-Ala-d-Ala-containing PG precursors; strains producing a lower proportion of PG precursors terminating ind-Ala-d-Ala consistently exhibited a lower response to vancomycin. Pretreatment of wild-type cells with vancomycin or teicoplanin to saturate and mask thed-Ala-d-Ala binding sites in nascent PG also blocked the transcriptional response to subsequent vancomycin exposure, and desleucyl vancomycin, a vancomycin analogue incapable of interacting withd-Ala-d-Ala residues, failed to inducevangene expression. Activation of resistance by a vancomycin–d-Ala-d-Ala PG complex predicts a limit to the proportion of PG that can be derived from precursors terminating ind-Ala-d-Lac, a restriction also enforced by the bifunctional activity of the VanA ligase.


2016 ◽  
Vol 85 (3) ◽  
Author(s):  
Luis A. Vega ◽  
Kayla M. Valdes ◽  
Ganesh S. Sundar ◽  
Ashton T. Belew ◽  
Emrul Islam ◽  
...  

ABSTRACTAs an exclusively human pathogen,Streptococcus pyogenes(the group A streptococcus [GAS]) has specifically adapted to evade host innate immunity and survive in multiple tissue niches, including blood. GAS can overcome the metabolic constraints of the blood environment and expresses various immunomodulatory factors necessary for survival and immune cell resistance. Here we present our investigation of one such factor, the predicted LysR family transcriptional regulator CpsY. The encoding gene,cpsY, was initially identified as being required for GAS survival in a transposon-site hybridization (TraSH) screen in whole human blood. CpsY is homologous with transcriptional regulators ofStreptococcus mutans(MetR),Streptococcus iniae(CpsY), andStreptococcus agalactiae(MtaR) that regulate methionine transport, amino acid metabolism, resistance to neutrophil-mediated killing, and survivalin vivo. Our investigation indicated that CpsY is involved in GAS resistance to innate immune cells of its human host. However, GAS CpsY does not manifest thein vitrophenotypes of its homologs in other streptococcal species. GAS CpsY appears to regulate a small set of genes that is markedly different from the regulons of its homologs. The differential expression of these genes depends on the growth medium, and CpsY modestly influences their expression. The GAS CpsY regulon includes known virulence factors (mntE,speB,spd,nga[spn],prtS[SpyCEP], andsse) and cell surface-associated factors of GAS (emm1,mur1.2,sibA[cdhA], andM5005_Spy0500). Intriguingly, the loss of CpsY in GAS does not result in virulence defects in murine models of infection, suggesting that CpsY function in immune evasion is specific to the human host.


1991 ◽  
Vol 11 (9) ◽  
pp. 4297-4305
Author(s):  
C Jones ◽  
K A Lee

The cellular factors E4F and ATF-2 (a member of the activating transcription factor [ATF] family) bind to common sites in the adenovirus E4 promoter and have both been suggested to mediate transcriptional activation by the viral E1A protein. To assess the role of E4F, we have introduced mutations into the E4F/ATF binding sites of the E4 promoter and monitored promoter activity in HeLa cells. We find that the core motif (TGACG) of the E4F/ATF binding site is important for E4 promoter activity. However, a point mutation adjacent to the core motif that reduces E4F binding (but has no effect on ATF binding) has no effect on E4 promoter activity. Together with previous results, these findings indicate that there are at least two cellular factors (a member of the ATF family and E4F) that can function with E1A to induce transcription of the E4 promoter. We also find that certain mutations strongly reduce E4 transcription in vivo but have no effect on ATF-2 binding in vitro. These results are therefore incompatible with the possibility that (with respect to members of the ATF family) ATF-2 alone can function with E1A to transactivate the E4 promoter in HeLa cells.


2015 ◽  
Vol 89 (12) ◽  
pp. 6453-6461 ◽  
Author(s):  
Salvatore Fusco ◽  
Qunxin She ◽  
Gabriella Fiorentino ◽  
Simonetta Bartolucci ◽  
Patrizia Contursi

ABSTRACTSulfolobusspindle-shaped virus 1 represents a model for studying virus-host interaction in harsh environments, and it is so far the only member of the familyFuselloviridaethat shows a UV-inducible life cycle. Although the virus has been extensively studied, mechanisms underpinning the maintenance of lysogeny as well as those regulating the UV induction have received little attention. Recently, a novel SSV1 transcription factor, F55, was identified. This factor was able to bindin vitroto several sequences derived from the early and UV-inducible promoters of the SSV1 genome. The location of these binding sites together with the differential affinity of F55 for these sequences led to the hypothesis that this protein might be involved in the maintenance of the SSV1 lysogeny. Here, we report anin vivosurvey of the molecular events occurring at the UV-inducible region of the SSV1 genome, with a focus on the binding profile of F55 before and after the UV irradiation. The binding of F55 to the target promoters correlates with transcription repression, whereas its dissociation is paralleled by transcription activation. Therefore, we propose that F55 acts as a molecular switch for the transcriptional regulation of the early viral genes.IMPORTANCEFunctional genomic studies of SSV1 proteins have been hindered by the lack of similarity with other characterized proteins. As a result, few insights into theirin vivoroles have been gained throughout the last 3 decades. Here, we report the firstin vivoinvestigation of an SSV1 transcription regulator, F55, that plays a key role in the transition from the lysogenic to the induced state of SSV1. We show that F55 regulates the expression of the UV-inducible as well as the early genes. Moreover, the differential affinity of this transcription factor for these targets allows a fine-tuned and temporal coordinated regulation of transcription of viral genes.


2021 ◽  
Vol 17 (3) ◽  
pp. e1009235
Author(s):  
Hong Liu ◽  
Wenjie Xu ◽  
Vincent M. Bruno ◽  
Quynh T. Phan ◽  
Norma V. Solis ◽  
...  

To gain a better understanding of the transcriptional response of Aspergillus fumigatus during invasive pulmonary infection, we used a NanoString nCounter to assess the transcript levels of 467 A. fumigatus genes during growth in the lungs of immunosuppressed mice. These genes included ones known to respond to diverse environmental conditions and those encoding most transcription factors in the A. fumigatus genome. We found that invasive growth in vivo induces a unique transcriptional profile as the organism responds to nutrient limitation and attack by host phagocytes. This in vivo transcriptional response is largely mimicked by in vitro growth in Aspergillus minimal medium that is deficient in nitrogen, iron, and/or zinc. From the transcriptional profiling data, we selected 9 transcription factor genes that were either highly expressed or strongly up-regulated during in vivo growth. Deletion mutants were constructed for each of these genes and assessed for virulence in mice. Two transcription factor genes were found to be required for maximal virulence. One was rlmA, which is required for the organism to achieve maximal fungal burden in the lung. The other was sltA, which regulates of the expression of multiple secondary metabolite gene clusters and mycotoxin genes independently of laeA. Using deletion and overexpression mutants, we determined that the attenuated virulence of the ΔsltA mutant is due in part to decreased expression aspf1, which specifies a ribotoxin, but is not mediated by reduced expression of the fumigaclavine gene cluster or the fumagillin-pseruotin supercluster. Thus, in vivo transcriptional profiling focused on transcription factors genes provides a facile approach to identifying novel virulence regulators.


2018 ◽  
Vol 86 (7) ◽  
Author(s):  
Liwen Deng ◽  
Rong Mu ◽  
Thomas A. Weston ◽  
Brady L. Spencer ◽  
Roxanne P. Liles ◽  
...  

ABSTRACTStreptococcus agalactiae(group BStreptococcus[GBS]) is often a commensal bacterium that colonizes healthy adults asymptomatically and is a frequent inhabitant of the vaginal tract in women. However, in immunocompromised individuals, particularly the newborn, GBS may transition to an invasive pathogen and cause serious disease. Despite the use of the currently recommended intrapartum antibiotic prophylaxis for GBS-positive mothers, GBS remains a leading cause of neonatal septicemia and meningitis. To adapt to the various host environments encountered during its disease cycle, GBS possesses multiple two-component regulatory systems (TCSs). Here we investigated the contribution of a transcriptional regulator containing a LytTR domain, LtdR, to GBS pathogenesis. Disruption of theltdRgene in the GBS chromosome resulted in a significant increase in bacterial invasion into human cerebral microvascular endothelial cells (hCMEC)in vitroas well as the greater penetration of the blood-brain barrier (BBB) and the development of meningitisin vivo. Correspondingly, infection of hCMEC with the ΔltdRmutant resulted in increased secretion of the proinflammatory cytokines interleukin-8 (IL-8), CXCL-1, and IL-6. Further, using a mouse model of GBS vaginal colonization, we observed that the ΔltdRmutant was cleared more readily from the vaginal tract and also that infection with the ΔltdRmutant resulted in increased cytokine production from human vaginal epithelial cells. RNA sequencing revealed global transcriptional differences between the ΔltdRmutant and the parental wild-type GBS strain. These results suggest that LtdR regulates many bacterial processes that can influence GBS-host interactions to promote both bacterial persistence and disease progression.


2006 ◽  
Vol 400 (1) ◽  
pp. 115-125 ◽  
Author(s):  
Bryan D. Griffin ◽  
Paul N. Moynagh

Despite certain structural and biochemical similarities, differences exist in the function of the NF-κB (nuclear factor κB) inhibitory proteins IκBα (inhibitory κBα) and IκBβ. The functional disparity arises in part from variance at the level of gene regulation, and in particular from the substantial induction of IκBα, but not IκBβ, gene expression post-NF-κB activation. In the present study, we probe the differential effects of IL (interleukin)-1β on induction of IκBα and perform the first characterization of the human IκBβ promoter. A consensus NF-κB-binding site, capable of binding NF-κB both in vitro and in vivo, is found in the IκBβ gene 5′ flanking region. However, the IκBβ promoter was not substantially activated by pro-inflammatory cytokines, such as IL-1β and tumour necrosis factor α, that are known to cause strong activation of NF-κB. Furthermore, in contrast with IκBα, NF-κB activation did not increase expression of endogenous IκBβ as assessed by analysis of mRNA and protein levels. Unlike κB-responsive promoters, IκBβ promoter-bound p65 inefficiently recruits RNA polymerase II, which stalls at the promoter. We present evidence that this stalling is likely due to the absence of transcription factor IIH engagement, a prerequisite for RNA polymerase II phosphorylation and transcriptional initiation. Differences in the conformation of promoter-bound NF-κB may underlie the variation in the ability to engage the basal transcriptional apparatus at the IκBβ and κB-responsive promoters. This accounts for the differential expression of IκB family members in response to NF-κB activation and furthers our understanding of the mechanisms involved in transcription factor activity and IκBβ gene regulation.


2003 ◽  
Vol 23 (8) ◽  
pp. 2720-2732 ◽  
Author(s):  
Daniela Foti ◽  
Rodolfo Iuliano ◽  
Eusebio Chiefari ◽  
Antonio Brunetti

ABSTRACT HMGI-Y is an architectural transcription factor that regulates gene expression in vivo by controlling the formation of stereospecific multiprotein complexes on the AT-rich regions of certain gene promoters. Recently, we demonstrated that HMGI-Y is required for proper transcription of the insulin receptor (IR) gene. Here we provide evidence that transcriptional activation of the human IR promoter requires the assembly of a transcriptionally active multiprotein-DNA complex which includes, in addition to HMGI-Y, the ubiquitously expressed transcription factor Sp1 and the CCAAT-enhancer binding protein β (C/EBPβ). Functional integrity of this nucleoprotein complex is required for full transactivation of the IR gene by Sp1 and C/EBPβ in cells readily expressing IRs. We show that HMGI-Y physically interacts with Sp1 and C/EBPβ and facilitates the binding of both factors to the IR promoter in vitro. Furthermore, HMGI-Y is needed for transcriptional synergism between these factors in vivo. Repression of HMGI-Y function adversely affects both Sp1- and C/EBPβ-induced transactivation of the IR promoter. Together, these findings demonstrate that HMGI-Y plays significant molecular roles in the transcriptional activities of these factors in the context of the IR gene and provide concordant support for the hypothesis that, in affected individuals, a putative defect in these nuclear proteins may cause decreased IR expression with subsequent impairment of insulin signaling and action.


Sign in / Sign up

Export Citation Format

Share Document