scholarly journals A molecular switch in sulfur metabolism to reduce arsenic and enrich selenium in rice grain

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sheng-Kai Sun ◽  
Xuejie Xu ◽  
Zhong Tang ◽  
Zhu Tang ◽  
Xin-Yuan Huang ◽  
...  

AbstractRice grains typically contain high levels of toxic arsenic but low levels of the essential micronutrient selenium. Anthropogenic arsenic contamination of paddy soils exacerbates arsenic toxicity in rice crops resulting in substantial yield losses. Here, we report the identification of the gain-of-function arsenite tolerant 1 (astol1) mutant of rice that benefits from enhanced sulfur and selenium assimilation, arsenic tolerance, and decreased arsenic accumulation in grains. The astol1 mutation promotes the physical interaction of the chloroplast-localized O-acetylserine (thiol) lyase protein with its interaction partner serine-acetyltransferase in the cysteine synthase complex. Activation of the serine-acetyltransferase in this complex promotes the uptake of sulfate and selenium and enhances the production of cysteine, glutathione, and phytochelatins, resulting in increased tolerance and decreased translocation of arsenic to grains. Our findings uncover the pivotal sensing-function of the cysteine synthase complex in plastids for optimizing stress resilience and grain quality by regulating a fundamental macronutrient assimilation pathway.

1999 ◽  
Vol 181 (18) ◽  
pp. 5833-5837 ◽  
Author(s):  
Paul Vermeij ◽  
Michael A. Kertesz

ABSTRACT Cysteine and methionine biosynthesis was studied inPseudomonas putida S-313 and Pseudomonas aeruginosa PAO1. Both these organisms used direct sulfhydrylation of O-succinylhomoserine for the synthesis of methionine but also contained substantial levels of O-acetylserine sulfhydrylase (cysteine synthase) activity. The enzymes of the transsulfuration pathway (cystathionine γ-synthase and cystathionine β-lyase) were expressed at low levels in both pseudomonads but were strongly upregulated during growth with cysteine as the sole sulfur source. In P. aeruginosa, the reverse transsulfuration pathway between homocysteine and cysteine, with cystathionine as the intermediate, allows P. aeruginosa to grow rapidly with methionine as the sole sulfur source. P. putida S-313 also grew well with methionine as the sulfur source, but no cystathionine γ-lyase, the key enzyme of the reverse transsulfuration pathway, was found in this species. In the absence of the reverse transsulfuration pathway, P. putida desulfurized methionine by the conversion of methionine to methanethiol, catalyzed by methionine γ-lyase, which was upregulated under these conditions. A transposon mutant of P. putida that was defective in the alkanesulfonatase locus (ssuD) was unable to grow with either methanesulfonate or methionine as the sulfur source. We therefore propose that in P. putida methionine is converted to methanethiol and then oxidized to methanesulfonate. The sulfonate is then desulfonated by alkanesulfonatase to release sulfite for reassimilation into cysteine.


Agriculture ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 325
Author(s):  
Ramin Rayee ◽  
Tran Dang Xuan ◽  
Tran Dang Khanh ◽  
Hoang-Dung Tran ◽  
Kifayatullah Kakar

The management of amylose and protein contents and cooking quality are the main challenges in rice macronutrients and quality improvement. This experiment was conducted to examine the rice grain quality, alkali digestion, and gel consistency responses to irrigation interval after anthesis. Three rice varieties (K1, K3, and K4) were subjected to different irrigation intervals (1, 2, and 3 d) after anthesis. The findings of this study showed that the protein content was markedly increased from 6.53–6.63% to 9.93–10.16%, whilst the amylose content was decreased significantly from 22.00–22.43% to 16.33–17.56% under stressed treatments at irrigation intervals, whilst the quantity of fatty acids was not affected. The 3-d irrigation interval recorded the highest protein content but the lowest amylose value. In addition, this treatment shows lower gelatinization temperature, but it is negatively associated with hard gel consistency under irrigation interval. This study highlights that the water management following a 3-d irrigation interval from anthesis is a useful and simple treatment to improve rice nutrients and grain cooking quality.


Author(s):  
Xiaorui Huang ◽  
Fei Su ◽  
Sheng Huang ◽  
Fating Mei ◽  
Xiaomu Niu ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1359
Author(s):  
Javaria Tabassum ◽  
Shakeel Ahmad ◽  
Babar Hussain ◽  
Amos Musyoki Mawia ◽  
Aqib Zeb ◽  
...  

Food crop production and quality are two major attributes that ensure food security. Rice is one of the major sources of food that feeds half of the world’s population. Therefore, to feed about 10 billion people by 2050, there is a need to develop high-yielding grain quality of rice varieties, with greater pace. Although conventional and mutation breeding techniques have played a significant role in the development of desired varieties in the past, due to certain limitations, these techniques cannot fulfill the high demands for food in the present era. However, rice production and grain quality can be improved by employing new breeding techniques, such as genome editing tools (GETs), with high efficiency. These tools, including clustered, regularly interspaced short palindromic repeats (CRISPR) systems, have revolutionized rice breeding. The protocol of CRISPR/Cas9 systems technology, and its variants, are the most reliable and efficient, and have been established in rice crops. New GETs, such as CRISPR/Cas12, and base editors, have also been applied to rice to improve it. Recombinases and prime editing tools have the potential to make edits more precisely and efficiently. Briefly, in this review, we discuss advancements made in CRISPR systems, base and prime editors, and their applications, to improve rice grain yield, abiotic stress tolerance, grain quality, disease and herbicide resistance, in addition to the regulatory aspects and risks associated with genetically modified rice plants. We also focus on the limitations and future prospects of GETs to improve rice grain quality.


2021 ◽  
Author(s):  
Weifeng Yang ◽  
Liang Xiong ◽  
Jiayan Liang ◽  
Qingwen Hao ◽  
Xin Luan ◽  
...  

Abstract Background: Rice varieties are required to have high yield and good grain quality. Grain chalkiness and grain shape are two important traits of rice grain quality. Low chalkiness slender grains are preferred by most rice consumers. Here, we dissected two closely linked quantitative trait loci (QTLs) controlling grain chalkiness and grain shape on rice chromosome 8 by substitution mapping. Results: Two closely linked QTLs controlling grain chalkiness and grain shape were identified using single-segment substitution lines (SSSLs). The two QTLs were then dissected on rice chromosome 8 by secondary substitution mapping. qPGC8.1 was located in an interval of 1382.6 kb and qPGC8.2 was mapped in a 2057.1 kb region. The maximum distance of the two QTLs was 4.37 Mb and the space distance of two QTL intervals was 0.72 Mb. qPGC8.1 controlled grain chalkiness and grain width. qPGC8.2 was responsible for grain chalkiness and for grain length and grain width. The additive effects of qPGC8.1 and qPGC8.2 on grain chalkiness were not affected by heat stress. Conclusions: Two closely linked QTLs qPGC8.1 and qPGC8.2 were dissected on rice chromosome 8. They controlled the phenotypes of grain chalkiness and grain shape. The two QTLs were insensitive to high temperature.


2019 ◽  
Vol 221 ◽  
pp. 34-46 ◽  
Author(s):  
Xiao Liu ◽  
Mo Li ◽  
Ping Guo ◽  
Zhongxue Zhang

Sign in / Sign up

Export Citation Format

Share Document