System-Level Modelling of MEMS Vibrating-Reed Electrometer in Matlab Simulink

Author(s):  
Yong Zhu ◽  
Y. Kuang
2013 ◽  
Vol 2 (1) ◽  
pp. 20-26 ◽  
Author(s):  
Volodymyr Ivakhno ◽  
Volodymyr V. Zamaruiev ◽  
Olga Ilina

AbstractThe conventional tools for the system level simulation of the switch-mode power converters (for example, MATLAB/SIMILINK) allow simulating the behavior of a power converter jointly operating with the control system in a closed automatic regulation system. This simulation tools either represent semiconductor devices as ideal switches or implement the simplest models based on volt-ampere characteristics of standard types of semiconductor devices for conducting loss estimation. This fact makes direct calculation of dynamic power losses in the semiconductor devices impossible. The MATLAB/SIMILINK subsystem that calculates the average power dissipated in the power switch during turn-on and turn-off transition is proposed in this paper. The represented approach used in the subsystem estimates by the means of MATLAB/SIMILINK the values of turn-on and turn-off energies at power switch commutation instances on the base of switching current and voltage measurements and the values of commutation energies given in datasheet on power switch. The simulation results of step-down converter with IGBT and proposed subsystem in MATLAB/SIMULINK were compared with the calculation results obtained in Semisel


2016 ◽  
Vol 4 (3) ◽  
pp. 85-90
Author(s):  
Anil Kumar Sahu ◽  
Vivek Kumar Chandra ◽  
G R Sinha

System-level modeling is generally needed due to simultaneous increase in design complexity with multi-million gate designs in today’s system-on-chips (SoCs). System C is generally applied to system-level modeling of Sigma-Delta ADC. CORDIC technique and test generation for the testing of mixed signal circuit components such as analog-to-digital converter is mostly implemented in system level modeling. This work focuses on developing fast and yet accurate model of BIST approach for Sigma-Delta ADC. The Sigma-Delta modulator’s ADC static parameters as well as dynamic parameters are degraded. One of the dynamic parameters, signal-to-noise ratio (SNR) is directly obtained by the SIMSIDES (MATLAB SIMULINK tool). Then, the obtained parameters are tested by using Built-in-self-test that is desirable for the VLSI system in order to reduce the non-recurring cost (NRE) per chip by the manufacturer. This paper demonstrates a possibility to realize a simulation of testing strategy of high-resolution Sigma-Delta modulator using MATLAB SIMULINK and Xilinx EDA tool environment. This work also contributes towards the Output Response Analyzer (ORA) being used for testing parameters which help in reducing the difficulties in design of the complete ORA circuit. Moreover, the reusable features of hardware in the computation of different parameters are also improved in the ORA design.


ACTA IMEKO ◽  
2015 ◽  
Vol 4 (3) ◽  
pp. 14
Author(s):  
Rihab Lahouli ◽  
Manel Ben-Romdhane ◽  
Chiheb Rebai ◽  
Dominique Dallet

<p>This paper presents the design and simulation results of a novel mixed baseband stage for a frequency band decomposition (FBD) analog-to-digital converter (ADC) in a multistandard receiver. The proposed FBD-based ADC architecture is flexible with programmable parallel branches composed of discrete time (DT) 4<sup>th</sup> order single-bit Sigma-Delta modulators. The mixed baseband architecture uses a single non-programmable anti-aliasing filter (AAF) avoiding the use of an automatic gain control (AGC) circuit. System level analysis proved that the proposed FBD architecture satisfies design specifications of the software defined radio (SDR) receiver. In this paper, the authors focus on the Butterworth AAF filter design for a multistandard receiver. Besides, theoretical analysis of the reconstruction stage for UMTS test case is discussed. It leads to a complicated system of equations and high digital filter orders. To reduce the digital reconstruction stage complexity, the authors propose an optimized digital reconstruction stage architecture design. The demodulation-based digital reconstruction stage using two decimation stages has been implemented using MATLAB/SIMULINK. Technical choices and performances are discussed. The computed signal-to-noise ratio (SNR) of the MATLAB/SIMULINK FBD ADC model is equal to at least 75 dB which satisfies the dynamic range required for UMTS signals. Next to hardware implementation with quantized filters coefficients, the authors implemented their proposition in VHDL in a SysGen environment. The measured SNR of the hardware implementation is equal to 74.08 dB which satisfies the required dynamic range of UMTS signals.</p>


1998 ◽  
Author(s):  
Martin P. Charns ◽  
Victoria A. Parker ◽  
William H. Wubbenhorst
Keyword(s):  

2018 ◽  
Vol 4 (3) ◽  
pp. 228-244 ◽  
Author(s):  
Ivan J. Raymond ◽  
Matthew Iasiello ◽  
Aaron Jarden ◽  
David Michael Kelly
Keyword(s):  

2007 ◽  
Vol 51 (1-2) ◽  
pp. 43
Author(s):  
Balázs Polgár ◽  
Endre Selényi
Keyword(s):  

1997 ◽  
Vol 473 ◽  
Author(s):  
J. A. Davis ◽  
J. D. Meindl

ABSTRACTOpportunities for Gigascale Integration (GSI) are governed by a hierarchy of physical limits. The levels of this hierarchy have been codified as: 1) fundamental, 2) material, 3) device, 4) circuit and 5) system. Many key limits at all levels of the hierarchy can be displayed in the power, P, versus delay, td, plane and the reciprocal length squared, L-2, versus response time, τ, plane. Power, P, is the average power transfer during a binary switching transition and delay, td, is the time required for the transition. Length, L, is the distance traversed by an interconnect that joins two nodes on a chip and response time, τ, characterizes the corresponding interconnect circuit. At the system level of the hierarchy, quantitative definition of both the P versus td and the L-2 versus τ displays requires an estimate of the complete stochastic wiring distribution of a chip.Based on Rent's Rule, a well known empirical relationship between the number of signal input/output terminals on a block of logic and the number of gate circuits with the block, a rigorous derivation of a new complete stochastic wire length distribution for an on-chip random logic network is described. This distribution is compared to actual data for modern microprocessors and to previously described distributions. A methodology for estimating the complete wire length distribution for future GSI products is proposed. The new distribution is then used to enhance the critical path model that determines the maximum clock frequency of a chip; to derive a preliminary power dissipation model for a random logic network; and, to define an optimal architecture of a multilevel interconnect network that minimizes overall chip size. In essence, a new complete stochastic wiring distribution provides a generic basis for maximizing the value obtained from a multilevel interconnect technology.


2016 ◽  
pp. 73-76
Author(s):  
B.M. Ventskivskiy ◽  
◽  
I.V. Poladych ◽  
S.O. Avramenko ◽  
◽  
...  

In recent years there has been an increase in the frequency of multiple pregnancies and the associated perinatal losses. It is a result of multiple pregnancy in ART refers to a high-risk gestation, at which premature births occur in 2 times more often than in singleton pregnancies. The objective: to determine the role of pro-inflammatory cytokines in the pathogenesis of premature labor in multiple pregnancy, as a result of assisted reproductive technology. Patients and methods. to determine the pro-inflammatory cytokines that all pregnant with bagtopliddyam held immunosorbent assay, defined concentrations of interleukin (IL) in serum and cervical mucus. Results. The analysis of the levels of pro-inflammatory cytokines (IL-1, IL-8) in the test environment, found high concentrations in the surveyed women with multiple pregnancy, due to the use of ART, compared with spontaneous multiple and singleton pregnancy. Increased concentration of proinflammatory cytokines in patients with multiple pregnancy by ART is associated with their synthesis at the system level, it stimulated foci of inflammation in the female genitals and extragenital localization. This correlates with the clinical data and statistical analysis, patients with multiple pregnancy as a result of ART had weighed infectious-inflammatory history. Conclusion. The study showed that elevated levels of proinflammatory cytokines in the systemic and local level in patients with multiple pregnancy due to ART, typical for women with miscarriage, because of the physiological course of pregnancy characterized by the predominance of anti-inflammatory cytokines that prevent rejection of the fetus as a foreign factor. Based on the data obtained proved the role of systemic inflammatory factors in the genesis of preterm labor in women with a multiple pregnancy, as a result of assisted reproductive technology. Key words: multiple pregnancy, assisted reproductive technology, premature birth, interleukine-1, interleukine-8.


Sign in / Sign up

Export Citation Format

Share Document