scholarly journals Estimation of Semiconductor Switching Losses under Hard Switching using Matlab/Simulink Subsystem

2013 ◽  
Vol 2 (1) ◽  
pp. 20-26 ◽  
Author(s):  
Volodymyr Ivakhno ◽  
Volodymyr V. Zamaruiev ◽  
Olga Ilina

AbstractThe conventional tools for the system level simulation of the switch-mode power converters (for example, MATLAB/SIMILINK) allow simulating the behavior of a power converter jointly operating with the control system in a closed automatic regulation system. This simulation tools either represent semiconductor devices as ideal switches or implement the simplest models based on volt-ampere characteristics of standard types of semiconductor devices for conducting loss estimation. This fact makes direct calculation of dynamic power losses in the semiconductor devices impossible. The MATLAB/SIMILINK subsystem that calculates the average power dissipated in the power switch during turn-on and turn-off transition is proposed in this paper. The represented approach used in the subsystem estimates by the means of MATLAB/SIMILINK the values of turn-on and turn-off energies at power switch commutation instances on the base of switching current and voltage measurements and the values of commutation energies given in datasheet on power switch. The simulation results of step-down converter with IGBT and proposed subsystem in MATLAB/SIMULINK were compared with the calculation results obtained in Semisel

Electronics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 644
Author(s):  
Michal Frivaldsky ◽  
Jan Morgos ◽  
Michal Prazenica ◽  
Kristian Takacs

In this paper, we describe a procedure for designing an accurate simulation model using a price-wised linear approach referred to as the power semiconductor converters of a DC microgrid concept. Initially, the selection of topologies of individual power stage blocs are identified. Due to the requirements for verifying the accuracy of the simulation model, physical samples of power converters are realized with a power ratio of 1:10. The focus was on optimization of operational parameters such as real-time behavior (variable waveforms within a time domain), efficiency, and the voltage/current ripples. The approach was compared to real-time operation and efficiency performance was evaluated showing the accuracy and suitability of the presented approach. The results show the potential for developing complex smart grid simulation models, with a high level of accuracy, and thus the possibility to investigate various operational scenarios and the impact of power converter characteristics on the performance of a smart gird. Two possible operational scenarios of the proposed smart grid concept are evaluated and demonstrate that an accurate hardware-in-the-loop (HIL) system can be designed.


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6733
Author(s):  
Giuseppe Aiello ◽  
Mario Cacciato ◽  
Francesco Gennaro ◽  
Santi Agatino Rizzo ◽  
Giuseppe Scarcella ◽  
...  

In this paper, a procedure to simulate an electronic power converter for control design and optimization purposes is proposed. For the addressed application, the converter uses SiC-MOSFET technology in bidirectional battery chargers composed of two power stages. The first stage consists of a single-phase AC/DC power factor correction synchronous rectifier. The following stage is a DC/DC dual active bridge. The converter has been modulated using a phase-shift technique which is able to manage bidirectional power flows. The development of a model-based simulation approach is essential to simplify the different design phases. Moreover, it is also important for the final validation of the control algorithm. A suitable tool consisting of a system-level simulation environment has been adopted. The tool is based on a block diagram design method accomplished using the Simulink toolbox in MATLAB™.


Author(s):  
L.G. Tugashova ◽  
◽  
A.V. Zatonskiy ◽  

This article provides an overview of the methods of managing the primary petroleum refining. To improve separation efficiency was proposed to stabilize the reflux ratio in the rectifying column. Purpose of work. To develop a system for automatic regulation of the reflux ratio of diesel fuel sec-tions in an atmospheric column of the refinery oil. To study the operating modes of an atmospheric column with the participation of the obtained automatic control system. Materials and methods. The article presented the features of the oil rectification process at the atmospheric unit of a small capacity refinery. The features of heat dissipation with intermediate circulation flash compared to a large-capacity unit will be shown in this article. The parameters of the facility were selected and divided into groups. A dynamic model of the section of shell-and-tube heat exchangers for heating oil with diesel fuel at a low-power refinery unit in the form of differential equations of heat balance has been developed to achieve the goal set work. An electrode dehydrator material balance equation has been compiled to find desalted oil consumption and saltwater consumption. The dependence of the reflux ratio of diesel fuel sections of the atmospheric column on the inlet and outlet temperatures of the atmospheric column circulation flash, the acute fractionation con-sumption, circulation flash, and oil fraction selection was obtained. The resulting model of the facili-ty consists of two parts: the linear part of the electric dehydrator and heat exchanger section, which determines the temperatures of the coolants, and the nonlinear output part, which determines the re-flux ratio depending on technological parameters. The proposed model makes it possible to investi-gate the effect of disturbances on the controlled parameters. The MATLAB/Simulink software prod-uct has been chosen as a tool to implement the model. A system of automatic regulation of the re-flux ratio in MATLAB/Simulink has been built with the participation of the developed model of the study object. Conclusion. The results of modeling a system for automatic regulation of the reflux ratio of diesel fuel sections in the atmospheric column of a low-power refinery unit has been ob-tained, taking into account the peculiarities of the process under disturbance conditions.


Author(s):  
Annas Budi Prastyawan ◽  
Mohammad Zaenal Efendi ◽  
Farid Dwi Murdianto

Renewable energy application using Photovoltaic (PV) is developed as a conversion from solar energy into electrical energy. PV produces output power according to irradiation and temperature conditions. PV has a Maximum Power Point or MPP based on P-V characteristic curve. In certain conditions, PV has an unstable output power then the accuracy of the power generated is not maximum. MPPT method with conventional control is not optimal to resolves power inaccuracies in the system. When the system has a circuit problem, the conventional power converter will be damage. To achieve accuracy and maximize PV output, the Maximum Power Point method will find MPP. Using MPPT Fuzzy Type-2 method on the converter can reliably overcome the inaccuracies and tracking speed of PV power. Full Bridge Converter topology is used as a safety circuit with a high-frequency isolation transformer. Implemented on MATLAB/Simulink software, Simulation results in Model 1 show that the average power accuracy with Fuzzy Type-2 is 91.40% compared to Fuzzy Type-1 with an average power accuracy of 80.64%. In Model 2, Fuzzy Type-2 is 87.63% compared to Fuzzy Type-1 of 77.93%. MPPT method using fuzzy type-2 is better than using fuzzy type-1 in terms of power accuracy.Keywords: full bridge converter, fuzzy type-2, MATLAB/Simulink, maximum power point tracking, photovoltaic.


Author(s):  
А. Yu. Izmaylov ◽  
Ya. P. Lobachevskiy ◽  
V. К. Khoroshenkov ◽  
N. Т. Goncharov ◽  
S. E. Lonin ◽  
...  

The introduction of information and digital technologies that support and support all technological processes in the field is an urgent need for the development and implementation of such technology. An organisationally complex and financially intensive project is necessary because of the wide variety of economic entities that differ in the size of production, forms of ownership and socio-economic conditions of production. Automated information control system for mobile units agricultural enterprise provides those-Niko-economic performance, optimum capacity utilization through the use of timely and reliable information on technology. Machine and tractor aggregates are appertained as control objects with variable structure, which is explained by possibility of the system formation from tractor or field machines mobile units with various purposes: tillable, cultivatable, sowing, harvesting and etc. This MTA feature was determined creation of digital control systems of two groups of automatic control and management of the basic energy and operational parameters: tractors, machines and vehicles as part of MTA. To the first group are appertained the automatic control system of tractor motor component loading, motion speed, frictional sliding. To the second group – automatic regulation system of operating depth, seed rate, treatment of liquid combined fertilizers and crop protection agents, filling and driving of various MTA. Novelty of researches consists in methodology of the organization of the centralized control and management of various technological processes at carrying out field works.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1568
Author(s):  
Bernhard Wunsch ◽  
Stanislav Skibin ◽  
Ville Forsström ◽  
Ivica Stevanovic

EMC simulations are an indispensable tool to analyze EMC noise propagation in power converters and to assess the best filtering options. In this paper, we first show how to set up EMC simulations of power converters and then we demonstrate their use on the example of an industrial AC motor drive. Broadband models of key power converter components are reviewed and combined into a circuit model of the complete power converter setup enabling detailed EMC analysis. The approach is demonstrated by analyzing the conducted noise emissions of a 75 kW power converter driving a 45 kW motor. Based on the simulations, the critical impedances, the dominant noise propagation, and the most efficient filter component and location within the system are identified. For the analyzed system, maxima of EMC noise are caused by resonances of the long motor cable and can be accurately predicted as functions of type, length, and layout of the motor cable. The common-mode noise at the LISN is shown to have a dominant contribution caused by magnetic coupling between the noisy motor side and the AC input side of the drive. All the predictions are validated by measurements and highlight the benefit of simulation-based EMC analysis and filter design.


2021 ◽  
Vol 18 (4) ◽  
pp. 1-27
Author(s):  
Yasir Mahmood Qureshi ◽  
William Andrew Simon ◽  
Marina Zapater ◽  
Katzalin Olcoz ◽  
David Atienza

The increasing adoption of smart systems in our daily life has led to the development of new applications with varying performance and energy constraints, and suitable computing architectures need to be developed for these new applications. In this article, we present gem5-X, a system-level simulation framework, based on gem-5, for architectural exploration of heterogeneous many-core systems. To demonstrate the capabilities of gem5-X, real-time video analytics is used as a case-study. It is composed of two kernels, namely, video encoding and image classification using convolutional neural networks (CNNs). First, we explore through gem5-X the benefits of latest 3D high bandwidth memory (HBM2) in different architectural configurations. Then, using a two-step exploration methodology, we develop a new optimized clustered-heterogeneous architecture with HBM2 in gem5-X for video analytics application. In this proposed clustered-heterogeneous architecture, ARMv8 in-order cluster with in-cache computing engine executes the video encoding kernel, giving 20% performance and 54% energy benefits compared to baseline ARM in-order and Out-of-Order systems, respectively. Furthermore, thanks to gem5-X, we conclude that ARM Out-of-Order clusters with HBM2 are the best choice to run visual recognition using CNNs, as they outperform DDR4-based system by up to 30% both in terms of performance and energy savings.


Sign in / Sign up

Export Citation Format

Share Document