Investigation of SAR Exposure Assessment in Vital Human Tissues at GSM Frequency

Author(s):  
Stephen Jemima Priyadarshini ◽  
D. Jude Hemanth
2005 ◽  
pp. 629-678
Author(s):  
Arnold Schecter ◽  
Olaf Päpke ◽  
Marian Pavuk ◽  
Rachel E. Tobey

Author(s):  
Shulin Wen ◽  
Jingwei Feng ◽  
A. Krajewski ◽  
A. Ravaglioli

Hydroxyapatite bioceramics has attracted many material scientists as it is the main constituent of the bone and the teeth in human body. The synthesis of the bioceramics has been performed for years. Nowadays, the synthetic work is not only focused on the hydroapatite but also on the fluorapatite and chlorapatite bioceramics since later materials have also biological compatibility with human tissues; and they may also be very promising for clinic purpose. However, in comparison of the synthetic bioceramics with natural one on microstructure, a great differences were observed according to our previous results. We have investigated these differences further in this work since they are very important to appraise the synthetic bioceramics for their clinic application.The synthetic hydroxyapatite and chlorapatite were prepared according to A. Krajewski and A. Ravaglioli and their recent work. The briquettes from different hydroxyapatite or chlorapatite powders were fired in a laboratory furnace at the temperature of 900-1300°C. The samples of human enamel selected for the comparison with synthetic bioceramics were from Chinese adult teeth.


Author(s):  
J. C. Fanning ◽  
J. F. White ◽  
R. Polewski ◽  
E. G. Cleary

Elastic tissue is an important component of the walls of arteries and veins, of skin, of the lungs and in lesser amounts, of many other tissues. It is responsible for the rubber-like properties of the arteries and for the normal texture of young skin. It undergoes changes in a number of important diseases such as atherosclerosis and emphysema and on exposure of skin to sunlight.We have recently described methods for the localizationof elastic tissue components in normal animal and human tissues. In the study of developing and diseased tissues it is often not possible to obtain samples which have been optimally prepared for immuno-electron microscopy. Sometimes there is also a need to examine retrospectively samples collected some years previously. We have therefore developed modifications to our published methods to allow examination of human and animal tissue samples obtained at surgery or during post mortem which have subsequently been: 1. stored frozen at -35° or -70°C for biochemical examination; 2.


Author(s):  
Matthew L. Hall ◽  
Stephanie De Anda

Purpose The purposes of this study were (a) to introduce “language access profiles” as a viable alternative construct to “communication mode” for describing experience with language input during early childhood for deaf and hard-of-hearing (DHH) children; (b) to describe the development of a new tool for measuring DHH children's language access profiles during infancy and toddlerhood; and (c) to evaluate the novelty, reliability, and validity of this tool. Method We adapted an existing retrospective parent report measure of early language experience (the Language Exposure Assessment Tool) to make it suitable for use with DHH populations. We administered the adapted instrument (DHH Language Exposure Assessment Tool [D-LEAT]) to the caregivers of 105 DHH children aged 12 years and younger. To measure convergent validity, we also administered another novel instrument: the Language Access Profile Tool. To measure test–retest reliability, half of the participants were interviewed again after 1 month. We identified groups of children with similar language access profiles by using hierarchical cluster analysis. Results The D-LEAT revealed DHH children's diverse experiences with access to language during infancy and toddlerhood. Cluster analysis groupings were markedly different from those derived from more traditional grouping rules (e.g., communication modes). Test–retest reliability was good, especially for the same-interviewer condition. Content, convergent, and face validity were strong. Conclusions To optimize DHH children's developmental potential, stakeholders who work at the individual and population levels would benefit from replacing communication mode with language access profiles. The D-LEAT is the first tool that aims to measure this novel construct. Despite limitations that future work aims to address, the present results demonstrate that the D-LEAT represents progress over the status quo.


2010 ◽  
Vol 48 (01) ◽  
Author(s):  
M Hashani ◽  
M koenig ◽  
LM Pawella ◽  
P Schirmacher ◽  
BK Straub

2020 ◽  
Vol 5 (Special) ◽  

The coronavirus illness (COVID-19) is caused by a new recombinant SARS-CoV (SARS-CoV) virus (SARS-CoV-2). Target cell infection by SARS-CoV is mediated by the prickly protein of the coronavirus and host cell receptor, enzyme 2 converting angiotensin (ACE2) [3]. Similarly, a recent study suggests that cellular entry by SARS-CoV-2 is dependent on both ACE2 as well as type II transmembrane axial protease (TMPRSS2) [4]. This means that detection of ACE2 and PRSS2 expression in human tissues can predict potential infected cells and their respective effects in COVID-19 patients [1].


Sign in / Sign up

Export Citation Format

Share Document