Bond Strength of Rebars in Cement-Stabilised Rammed Earth

Author(s):  
R. Lepakshi ◽  
B. V. Venkatarama Reddy
Keyword(s):  
2021 ◽  
pp. 136943322110262
Author(s):  
Satya Sai Deep Raavi ◽  
Deb Dulal Tripura

In this article, the effect of weathering and corrosion on the bond properties of bamboo- and steel-reinforced cement-stabilized rammed earth blocks was investigated. The treated, untreated bamboo and steel reinforcement types were considered under regular and weathered categories. Reinforcement of 8 mm, 10 mm and 12 mm diameters were used along with 10% of cement as stabilizer. A total of 90 reinforced cement-stabilized rammed earth blocks were prepared and tested for bond strength. The investigation shows that the bond force and bond strength of all the blocks reduced due to weathering and corrosion of reinforcement. In case of blocks with bamboo reinforcement only, a minor reduction in bond properties (bond force and bond strength) was identified, but in case of blocks with steel reinforcement, a major reduction in bond properties was identified. All the blocks failed by either lateral splitting, pullout or pullout along with lateral splitting. However, the pullout failure was observed only in the blocks with weathered or corroded reinforcement, making it clear that the mode of failure was influenced by the type and physical condition of the reinforcement. Based on the results obtained, it was not advisable to use of corroded steel (CS) bars as reinforcement in rammed earth. However, considering the bond properties, treated bamboo can be a potential and economical alternative to CS. A series of statistical analysis was performed using the test data to predict the bond properties correlating perimeter, diameter, type and condition of reinforcement. The regression equations generated from statistical analysis represent a strong correlation between the actual and predicted values and can be used for predicting the bond properties of rammed earth accurately.


2021 ◽  
Vol 33 (11) ◽  
pp. 04021293
Author(s):  
R. Sri Bhanupratap Rathod ◽  
B. V. Venkatarama Reddy

2020 ◽  
Vol 255 ◽  
pp. 119405
Author(s):  
R. Lepakshi ◽  
B.V. Venkatarama Reddy
Keyword(s):  

The use of rammed earth has been increasing widely during recent years in many countries as an alternative material for building houses due to its valuable characteristics such as affordability, environment friendly, comfort, strength and durability. This thesis presents the result of an experimental study to evaluate the compressive strength and bond strength properties of untreated, treated bamboo splints and steel reinforced cement stabilized rammed earth blocks. To overcome the deficiencies of blocks, sisal fibers are added to improve the performance of CSRE blocks. Fibers are secondary reinforced materials and acts as crack arresters which improves the strength of cement stabilized rammed earth blocks. In this experimental study, red soil is mixed by adding four different percentages (5%, 10%, 15%, and 20%) of OPC and sisal fiber with 0.2%, 0.4%, 0.6%, 0.8%, and 1.0% by weight of soil respectively. The bamboo splints were treated by soaking them in chemical solution of boric acid, Copper -Sulphate and Potassium Di-chromate (1.5:3:4).The resin-based adhesive with coarse sand will be applied to the top of bamboo splints. After 28days of curing period the cubes were tested for compressive strength, pull-out test is done for a series of CSRE blocks in which Bamboo splints and steel bars are embedded to find out its bond strength.


Author(s):  
Shubham N. Dadgal ◽  
Shrikant Solanke

In modern days for structures in coastal areas it has been observed that the premature structural failures are occurs due to corrosion of the reinforcements of the designed structural member. The corrosion causes the structural damage which in turn leads to reduction in the bearing capacity of the concerned structural members. The aim of this study was to study the effect of partial replacement of fly ash to minimize the corrosion effect. Beams were designed and corroded by using artificial method known accelerated corrosion method. The beams were then tested for flexural and bond strength. Also the weight loss of the reinforced bars was been determined using electrical resistivity method. The fly ash will replace by 10% and 15%.The strength will calculate at varying percentage of corrosion at 10% and 15%. Beams will cast at M25 grade concrete. The flexural strength will test by using UTM and the bond strength will calculate using pullout test.


2015 ◽  
Vol 10 (1) ◽  
pp. 103-112
Author(s):  
Clayton Stone ◽  
Dusan Katunsky

2015 ◽  
Vol 10 (1) ◽  
pp. 103-112 ◽  
Author(s):  
Clayton Stone ◽  
Dusan Katunsky

Sign in / Sign up

Export Citation Format

Share Document