Power Extraction from PV Module Using Hybrid ANFIS Controller

Author(s):  
Tata Venkat Dixit ◽  
Anamika Yadav ◽  
S. Gupta ◽  
Almoataz Y. Abdelaziz
Keyword(s):  
Author(s):  
D Dinesh Kumar ◽  
Challa Babu ◽  
K Jyotheeswara Reddy ◽  
K Kumar ◽  
N K Kumar

2021 ◽  
Vol 13 (14) ◽  
pp. 7689
Author(s):  
Diego Alejandro Herrera-Jaramillo ◽  
Elkin Edilberto Henao-Bravo ◽  
Daniel González González Montoya ◽  
Carlos Andrés Ramos-Paja ◽  
Andrés Julián Saavedra-Montes

Solar energy is a source of sustainable energy and its optimal use depends on the efficiency and reliability of PV systems. Dual active bridge converters are a solution to interface PV modules with the grid or high voltage requirement applications due to the high voltage-conversion-ratio and high efficiency provided by such a converter. The three main contributions of this work are: an extensive mathematical model of a DAB converter connected to a PV module including protection diodes, which is intended to design non-linear controllers, an explicit linearized version of the model, which is oriented to design traditional control systems; and a detailed and replicable application example of the model focused on maximizing the power extraction from a PV system. The modeling approach starts with the differential equations of the PV system; however, only the fundamental and average components of each signal is used to represent it. The control-oriented model is validated using a detailed circuital simulation. First, through the comparison of frequency and time diagrams of the proposed model and a detailed one; and then, through the simulation of the PV system in a realistic application case. PV voltage regulation and maximum power extraction are confirmed in simulation results.


2019 ◽  
Vol 8 (2S8) ◽  
pp. 1063-1068

In this article, an improved single diode Photo Voltaic mathematical system with novel Fuzzy Logic Control (FLC) based maximum power extraction approach was developed. The photovoltaic module voltage versus current characteristics derivation were developed and it’s utilized to extract the photovoltaic module unknown arguments via as saturation current, light generated current, shunt and ideality factor, series resistance at reference. The various mathematical models are utilized to determine the photovoltaic system arguments at reference circumference by acquainting equations to calculate the value of resistance in series and shunt. The production of highest power of PV modules were equated with dissimilar manufactured PV model with various environmental conditions. The percentage relative error and highest power is computed and compared with previous models in the survey for dissimilar photovoltaic modules. Further, in this paper added with improved Perturb and Observe (P&O) based FLC control approach utilized to extract the highest energy from solar panel. The output of the developed system exposes the good performance during steady state period and transient periods. Moreover to confirm the developed photovoltaic model matches exactly with that of Sandia PV module.


Author(s):  
Mohamed Moutchou ◽  
Atman Jbari

In this paper, we present our contribution in photovoltaic energy optimization subject. In this research work, the goal is to determinate fastly the optimal PV Module working point, allowing maximum power extraction. In this work we use DC-DC Boost converter to control the working point, by adjusting PV voltage trough duty cycle. In order to achieve our goal, we use the combination of incremental conductance MPPT technique and DC-DC Boost converter backstepping control. The validation of this control is made by Matlab simulation; the obtained results prove its effectiveness and its good maximum power tracking dynamics for different irradiance and temperature profiles.


Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1543 ◽  
Author(s):  
Rashid Khan ◽  
Laiq Khan ◽  
Shafaat Ullah ◽  
Irfan Sami ◽  
Jong-Suk Ro

The formulation of a maximum power point tracking (MPPT) control strategy plays a vital role in enhancing the inherent low conversion efficiency of a photovoltaic (PV) module. Keeping in view the nonlinear electrical characteristics of the PV module as well as the power electronic interface, in this paper, a hybrid nonlinear sensorless observer based robust backstepping super-twisting sliding mode control (BSTSMC) MPPT strategy is formulated to optimize the electric power extraction from a standalone PV array, connected to a resistive load through a non-inverting DC–DC buck-boost power converter. The reference peak power voltage is generated via the Gaussian process regression (GPR) based probabilistic machine learning approach that is adequately tracked by the proposed MPPT scheme. A generalized super-twisting algorithm (GSTA) based differential flatness approach (DFA) is used to retrieve all the missing system states. The Lyapunov stability theory is used for guaranteeing the stability of the proposed closed-loop MPPT technique. The Matlab/Simulink platform is used for simulation, testing and performance validation of the proposed MPPT strategy under different weather conditions. Its MPPT performance is further compared with the recently proposed benchmark backstepping based MPPT control strategy and the conventional MPPT strategies, namely, sliding mode control (SMC), proportional integral derivative (PID) control and the perturb-and-observe (P&O) algorithm. The proposed technique is found to have a superior tracking performance in terms of offering a fast dynamic response, finite-time convergence, minute chattering, higher tracking accuracy and having more robustness against plant parametric uncertainties, load disturbances and certain time-varying sinusoidal faults occurring in the system.


2020 ◽  
Vol 2 (1) ◽  
pp. 19-24
Author(s):  
Sakhr Mohammed Sultan ◽  
Chih Ping Tso ◽  
Ervina Efzan Mohd Noor ◽  
Fadhel Mustafa Ibrahim ◽  
Saqaff Ahmed Alkaff

Photovoltaic Thermal Solar Collector (PVT) is a hybrid technology used to produce electricity and heat simultaneously. Current enhancements in PVT are to increase the electrical and thermal efficiencies. Many PVT factors such as type of absorber, thermal conductivity, type of PV module and operating conditions are important parameters that can control the PVT performance. In this paper, an analytical model, using energy balance equations, is studied for PVT with an improved parallel flow absorber. The performance is calculated for a typical sunny weather in Malaysia. It was found that the maximum electrical and thermal efficiencies are 12.9 % and 62.6 %, respectively. The maximum outlet water temperature is 59 oC.


2019 ◽  
Vol 7 (4) ◽  
pp. 835-840
Author(s):  
Dhruv M. Dhivar ◽  
M.B. Jhala ◽  
M. K. Kathiria

Sign in / Sign up

Export Citation Format

Share Document