Maximum Power Extraction from PV System Using Fuzzy Logic

2019 ◽  
Vol 7 (4) ◽  
pp. 835-840
Author(s):  
Dhruv M. Dhivar ◽  
M.B. Jhala ◽  
M. K. Kathiria
2019 ◽  
Vol 8 (2S8) ◽  
pp. 1140-1148

The extensive usage of solar has extended the opportunity of research to increase the efficiency of PV module. Maximum Power Point Tracking technique plays an important role. In P & O and Incremental conductance the power produced is less. In this paper a Fuzzy based P & O and Fuzzy based Incremental Conductance MPPT techniques are presented to extract the maximum power from the photovoltaic system by considering the dynamic variation in irradiations and temperature also. Here the 100 kW PV array is considered and it is connected to the utility grid via a DC-DC boost converter of 500volts with a 3 phase three level voltage source converter. The result is obtained by the MAT LAB Simulink and the same is appraised with the traditional P & O and Incremental conductance. The PV System produces the maximum power by the application of Fuzzy based incremental Technique compared to conventional methods.


Author(s):  
Syafaruddin Syafaruddin

It is crucial to improve the photovoltaic (PV) system efficiency and to develop the reliability of PV generation control systems. One of the approaches to increase the efficiency of PV power generation system is to operate the PV systems optimally at the maximum power point. However, the PV system can be optimally operated only at a specific output voltage; otherwise the output power fluctuates under intermittent weather conditions. In addition, it is very difficult to test the performance of PV systems controller under the same weather condition during the development process where the field testing is costly and time consuming. For these reasons, the presentation is about the state of the art techniques to track the maximum available output power of photovoltaic systems called maximum power point tracking (MPPT) control systems. This topic could be also one of the most challenges in photovoltaic systems application that has been receiving much more attention worldwide. The talks will cover the application of intelligent techniques by means the artificial neural network (ANN) and fuzzy logic controller scheme using polar information to develop a novel real-time simulation technique for MPPT control by using dSPACE real-time interface system. In this case, the three-layer feed-forward ANN is trained once for different scenarios to determine the global MPP voltage and power and the fuzzy logic with polar information controller takes the global maximum power point (MPP) voltage as a reference voltage to generate the required control signal for the power converter. This type of fuzzy logic rules is implemented for the first time in MPPT control application. The proposed method has been tested using different solar cell technologies such as monocrystalline silicon, thin-film cadmium telluride and triple junction amorphous silicon solar cells. The verification of availability and stability of the proposed system through the real-time simulator shows that the proposed system can respond accurately for different scenarios and different solar cell technologies. In other cases, one of the main causes of reducing energy yield of photovoltaic systems is the partially shaded condition. Although the conventional MPPT control algorithms operate well in a uniform solar irradiance, they do not operate well in non-uniform solar irradiance conditions. The non-uniform conditions cause multiple local maximum power points on the power-voltage curve. The conventional MPPT methods cannot distinguish between the global and local peaks. Since the global power point may change within a large voltage window and also its position depends on shading patterns, it is very difficult to recognize the global operating point under partially shaded conditions. From these reasons, the presentation will address the effectiveness of the proposed MPPT method to solve the partially shaded conditions under the experimental real-time simulation technique based dSPACE real-time interface system for different size of PV arrays, such as 3x3(0.5kW) and 20x3(3.3kW) and different interconnected PV arrays, for instance series-parallel (SP), bridge link (BL) and total cross tied (TCT) configurations.


2021 ◽  
Vol 16 ◽  
pp. 198-215
Author(s):  
A. Bharathi Sankar Ammaiyappan ◽  
R. Seyezhai

In recent days, photovoltaic (PV) system is the most promising renewable energy technologies and the PV cell has to operate at the optimum operating point to deliver maximum power. In order to obtain maximum power from PV, a maximum power point controller is required. This paper presents the simulation and hardware implementation of fuzzy logic (FL) maximum power point (MPPT) controller with FPGA technology for photovoltaic system. The MPPT algorithm is implemented for a Silicon carbide (SiC) MOSFET based boost DC-DC converter which provides fast switching, low losses and high voltage gain. The proposed MPPT algorithm is implemented on a SPARTAN/FPGA board platform based on the model developed and executed in MATLAB/SIMULINK. The entire system designed and implemented to hardware was successfully tested on a laboratory prototype PV array. The experimental results show the effectiveness and feasibility of the proposed controller and the results were satisfactory.


2022 ◽  
Author(s):  
Anbarasi MP ◽  
Kanthalakshmi S

Abstract A control strategy for power maximization which is an important mechanism to extract maximum power under changing environmental conditions using Adaptive Particle Swarm Optimization (APSO) is proposed in this paper. An Adaptive Inertia Weighting Factor (AIWF) is utilised in the velocity update equation of traditional PSO for the improvement in speed of convergence and precision in tracking Maximum Power Point (MPP) in standalone Photovoltaic system. Adaptation of weights based on the success rate of particles towards maximum power extraction is the most promising feature of AIWF. The inertia weight is kept constant in traditional PSO for the complete duration of optimization process. The MPPT in PV system poses a dynamic optimization problem and the proposed APSO approach paves way not only to track MPP under uniform irradiation conditions, but also to track MPP under non uniform irradiation conditions. Simulations are done in MATLAB/Simulink environment to verify the effectiveness of proposed technique in comparison with the existing PSO technique. With change in irradiation and temperature, the APSO technique is found to provide better results in terms of tracking speed and efficiency. Hardware utilizing dSPACE DS1104 controller board is developed in the laboratory to verify the effectiveness of APSO method in real time.


2019 ◽  
Vol 9 (2) ◽  
pp. 29-35
Author(s):  
Rachid Belaidi ◽  
Boualem Bendib ◽  
Djamila Ghribi ◽  
Belkacem Bouzidi ◽  
Mohamed Mghezzi Larafi

The main goal of maximum power point (MPP) tracking control is to extract the maximum photovoltaic (PV) power by finding the optimal operating point under varying atmospheric conditions to improve the efficiency of PV systems. In recent years, the field of tracking the MPP of PV systems has attracted the interest of many researchers from the industry and academia. This research paper presents a comparative study between the modern fuzzy logic based controller and the conventional perturb & observe (P&O) technique. The comparative study was carried out under different weather conditions in order to analyse and evaluate the performance of the PV system. The overall system simulation has been performed using Matlab/Simulink software environment. The simulation results show that the dynamic behaviour exhibited by the modern fuzzy controller outperforms that of the conventional controller (P&O) in terms of response time and damping characteristics.   Keywords: MPPT, photovoltaic system, fuzzy logic control, P&O algorithm.


Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1512
Author(s):  
Mithun Madhukumar ◽  
Tonse Suresh ◽  
Mohsin Jamil

Photovoltaic (PV) systems have recently been recognized as a leading way in the production of renewable electricity. Due to the unpredictable changes in environmental patterns, the amount of solar irradiation and cell operating temperature affect the power generated by the PV system. This paper, therefore, discusses the grid-integrated PV system to extract maximum power from the PV array to supply load requirements and the supply surplus power to the AC grid. The primary design is to have maximum power point tracking (MPPT) of the non-uniformly irradiated PV array, conversion efficiency maximization, and grid synchronization. This paper investigates various MPPT control algorithms using incremental conductance method, which effectively increased the performance and reduced error, hence helped to extract solar array’s power more efficiently. Additionally, other issues of PV grid-connected system such as network stability, power quality, and grid synchronization functions were implemented. The control of the voltage source converter is designed in such a way that PV power generated is synchronous to the grid. This paper also includes a comparative analysis of two MPPT techniques such as incremental conductance (INC) and perturb-and-observe (P&O). Extensive simulation of various controllers has been conducted to achieve enhanced efficient power extraction, grid synchronization and minimal performance loss due to dynamic tracking errors, particularly under fast-changing irradiation in Matlab/Simulink. The overall results favour INC algorithm and meet the required standards.


Sign in / Sign up

Export Citation Format

Share Document