Neuroimaging, Software, and Communication

Author(s):  
Edison Bicudo
2020 ◽  
Vol 16 (6) ◽  
pp. e1007924 ◽  
Author(s):  
Garikoitz Lerma-Usabiaga ◽  
Noah Benson ◽  
Jonathan Winawer ◽  
Brian A. Wandell

2020 ◽  
Vol 14 ◽  
Author(s):  
Daniel J. King ◽  
Jan Novak ◽  
Adam J. Shephard ◽  
Richard Beare ◽  
Vicki A. Anderson ◽  
...  

Structural segmentation of T1-weighted (T1w) MRI has shown morphometric differences, both compared to controls and longitudinally, following a traumatic brain injury (TBI). While many patients with TBI present with abnormalities on structural MRI images, most neuroimaging software packages have not been systematically evaluated for accuracy in the presence of these pathology-related MRI abnormalities. The current study aimed to assess whether acute MRI lesions (MRI acquired 7–71 days post-injury) cause error in the estimates of brain volume produced by the semi-automated segmentation tool, Freesurfer. More specifically, to investigate whether this error was global, the presence of lesion-induced error in the contralesional hemisphere, where no abnormal signal was present, was measured. A dataset of 176 simulated lesion cases was generated using actual lesions from 16 pediatric TBI (pTBI) cases recruited from the emergency department and 11 typically-developing controls. Simulated lesion cases were compared to the “ground truth” of the non-lesion control-case T1w images. Using linear mixed-effects models, results showed that hemispheric measures of cortex volume were significantly lower in the contralesional-hemisphere compared to the ground truth. Interestingly, however, cortex volume (and cerebral white matter volume) were not significantly different in the lesioned hemisphere. However, percent volume difference (PVD) between the simulated lesion and ground truth showed that the magnitude of difference of cortex volume in the contralesional-hemisphere (mean PVD = 0.37%) was significantly smaller than that in the lesioned hemisphere (mean PVD = 0.47%), suggesting a small, but systematic lesion-induced error. Lesion characteristics that could explain variance in the PVD for each hemisphere were investigated. Taken together, these results suggest that the lesion-induced error caused by simulated lesions was not focal, but globally distributed. Previous post-processing approaches to adjust for lesions in structural analyses address the focal region where the lesion was located however, our results suggest that focal correction approaches are insufficient for the global error in morphometric measures of the injured brain.


2018 ◽  
Author(s):  
Alexander Bowring ◽  
Camille Maumet ◽  
Thomas E. Nichols

AbstractA wealth of analysis tools are available to fMRI researchers in order to extract patterns of task variation and, ultimately, understand cognitive function. However, this ‘methodological plurality’ comes with a drawback. While conceptually similar, two different analysis pipelines applied on the same dataset may not produce the same scientific results. Differences in methods, implementations across software packages, and even operating systems or software versions all contribute to this variability. Consequently, attention in the field has recently been directed to reproducibility and data sharing. Neuroimaging is currently experiencing a surge in initiatives to improve research practices and ensure that all conclusions inferred from an fMRI study are replicable.In this work, our goal is to understand how choice of software package impacts on analysis results. We use publically shared data from three published task fMRI neuroimaging studies, reanalyzing each study using the three main neuroimaging software packages, AFNI, FSL and SPM, using parametric and nonparametric inference. We obtain all information on how to process, analyze, and model each dataset from the publications. We make quantitative and qualitative comparisons between our replications to gauge the scale of variability in our results and assess the fundamental differences between each software package. While qualitatively we find broad similarities between packages, we also discover marked differences, such as Dice similarity coefficients ranging from 0.000 - 0.743 in comparisons of thresholded statistic maps between software. We discuss the challenges involved in trying to reanalyse the published studies, and highlight our own efforts to make this research reproducible.


NeuroImage ◽  
2005 ◽  
Vol 24 (4) ◽  
pp. 1170-1179 ◽  
Author(s):  
Scott C. Neu ◽  
Daniel J. Valentino ◽  
Arthur W. Toga

2021 ◽  
Vol 15 ◽  
Author(s):  
Foroogh Razavi ◽  
Samira Raminfard ◽  
Hadis Kalantar Hormozi ◽  
Minoo Sisakhti ◽  
Seyed Amir Hossein Batouli

Pineal gland (PG) is a structure located in the midline of the brain, and is considered as a main part of the epithalamus. There are numerous reports on the facilitatory role of this area for brain function; hormone secretion and its role in sleep cycle are the major reports. However, reports are rarely available on the direct role of this structure in brain cognition and in information processing. A suggestion for the limited number of such studies is the lack of a standard atlas for the PG; none of the available MRI templates and atlases has provided parcellations for this structure. In this study, we used the three-dimensional (3D) T1-weighted MRI data of 152 healthy young volunteers, and provided a probabilistic map of the PG in the standard Montreal Neurologic Institute (MNI) space. The methods included collecting the data using a 64-channel head coil on a 3-Tesla Prisma MRI Scanner, manual delineation of the PG by two experts, and robust template and atlas construction algorithms. This atlas is freely accessible, and we hope importing this atlas in the well-known neuroimaging software packages would help to identify other probable roles of the PG in brain function. It could also be used to study pineal cysts, for volumetric analyses, and to test any associations between the cognitive abilities of the human and the structure of the PG.


2019 ◽  
Author(s):  
David Meunier ◽  
Annalisa Pascarella ◽  
Dmitrii Altukhov ◽  
Mainak Jas ◽  
Etienne Combrisson ◽  
...  

AbstractRecent years have witnessed a massive push towards reproducible research in neuroscience. Unfortunately, this endeavor is often challenged by the large diversity of tools used, project-specific custom code and the difficulty to track all user-defined parameters. NeuroPycon is an open-source multi-modal brain data analysis toolkit which provides Python-based template pipelines for advanced multi-processing of MEG, EEG, functional and anatomical MRI data, with a focus on connectivity and graph theoretical analyses. Importantly, it provides shareable parameter files to facilitate replication of all analysis steps. NeuroPycon is based on the NiPype framework which facilitates data analyses by wrapping many commonly-used neuroimaging software tools into a common Python environment. In other words, rather than being a brain imaging software with is own implementation of standard algorithms for brain signal processing, NeuroPycon seamlessly integrates existing packages (coded in python, Matlab or other languages) into a unified python framework. Importantly, thanks to the multi-threaded processing and computational efficiency afforded by NiPype, NeuroPycon provides an easy option for fast parallel processing, which critical when handling large sets of multi-dimensional brain data. Moreover, its flexible design allows users to easily configure analysis pipelines by connecting distinct nodes to each other. Each node can be a Python-wrapped module, a user-defined function or a well-established tool (e.g. MNE-Python for MEG analysis, Radatools for graph theoretical metrics, etc.). Last but not least, the ability to use NeuroPycon parameter files to fully describe any pipeline is an important feature for reproducibility, as they can be shared and used for easy replication by others. The current implementation of NeuroPycon contains two complementary packages: The first, called ephypype, includes pipelines for electrophysiology analysis and a command-line interface for on the fly pipeline creation. Current implementations allow for MEG/EEG data import, pre-processing and cleaning by automatic removal of ocular and cardiac artefacts, in addition to sensor or source-level connectivity analyses. The second package, called graphpype, is designed to investigate functional connectivity via a wide range of graph-theoretical metrics, including modular partitions. The present article describes the philosophy, architecture, and functionalities of the toolkit and provides illustrative examples through interactive notebooks. NeuroPycon is available for download via github (https://github.com/neuropycon) and the two principal packages are documented online (https://neuropycon.github.io/ephypype/index.html. and https://neuropycon.github.io/graphpype/index.html). Future developments include fusion of multi-modal data (eg. MEG and fMRI or intracranial EEG and fMRI). We hope that the release of NeuroPycon will attract many users and new contributors, and facilitate the efforts of our community towards open source tool sharing and development, as well as scientific reproducibility.


2010 ◽  
Vol 8 (1) ◽  
pp. 19-19
Author(s):  
Blake C. Lucas ◽  
John A. Bogovic ◽  
Aaron Carass ◽  
Pierre-Louis Bazin ◽  
Jerry L. Prince ◽  
...  

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
D. A. Barrière ◽  
R. Magalhães ◽  
A. Novais ◽  
P. Marques ◽  
E. Selingue ◽  
...  

AbstractPreclinical imaging studies offer a unique access to the rat brain, allowing investigations that go beyond what is possible in human studies. Unfortunately, these techniques still suffer from a lack of dedicated and standardized neuroimaging tools, namely brain templates and descriptive atlases. Here, we present two rat brain MRI templates and their associated gray matter, white matter and cerebrospinal fluid probability maps, generated from ex vivo $${\mathrm{T}}_2^ \ast$$T2*-weighted images (90 µm isotropic resolution) and in vivo T2-weighted images (150 µm isotropic resolution). In association with these templates, we also provide both anatomical and functional 3D brain atlases, respectively derived from the merging of the Waxholm and Tohoku atlases, and analysis of resting-state functional MRI data. Finally, we propose a complete set of preclinical MRI reference resources, compatible with common neuroimaging software, for the investigation of rat brain structures and functions.


2010 ◽  
Vol 8 (1) ◽  
pp. 5-17 ◽  
Author(s):  
Blake C. Lucas ◽  
John A. Bogovic ◽  
Aaron Carass ◽  
Pierre-Louis Bazin ◽  
Jerry L. Prince ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document