Water Security: Challenges to the Irrigation Water-Energy Nexus in Australia

Author(s):  
Stefanie Schulte ◽  
Georgina Davis ◽  
Jennifer Brown
Author(s):  
Howard Wheater ◽  
Patricia Gober

In this paper, we discuss the multiple dimensions of water security and define a set of thematic challenges for science, policy and governance, based around cross-scale dynamics, complexity and uncertainty. A case study of the Saskatchewan River basin (SRB) in western Canada is presented, which encompasses many of the water-security challenges faced worldwide. A science agenda is defined based on the development of the SRB as a large-scale observatory to develop the underpinning science and social science needed to improve our understanding of water futures under societal and environmental change. We argue that non-stationarity poses profound challenges for existing science and that new integration of the natural sciences, engineering and social sciences is needed to address decision making under deep uncertainty. We suggest that vulnerability analysis can be combined with scenario-based modelling to address issues of water security and that knowledge translation should be coupled with place-based modelling, adaptive governance and social learning to address the complexity uncertainty and scale dynamics of contemporary water problems.


Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2558 ◽  
Author(s):  
Andrew Ristvey ◽  
Bruk Belayneh ◽  
John Lea-Cox

Water security in ornamental plant production systems is vital for maintaining profitability. Expensive, complicated, or potentially dangerous treatment systems, together with skilled labor, is often necessary to ensure water quality and plant health. Two contrasting commercial ornamental crop production systems in a mesic region are compared, providing insight into the various strategies employed using irrigation-water containment and treatment systems. The first is a greenhouse/outdoor container operation which grows annual ornamental plants throughout the year using irrigation booms, drip emitters, and/or ebb and flow systems depending on the crop, container size, and/or stage of growth. The operation contains and recycles 50–75% of applied water through a system of underground cisterns, using a recycling reservoir and a newly constructed 0.25 ha slow-sand filtration (SSF) unit. Groundwater provides additional water when needed. Water quantity is not a problem in this operation, but disease and water quality issues, including agrochemicals, are of potential concern. The second is a perennial-plant nursery which propagates cuttings and produces field-grown trees and containerized plants. It has a series of containment/recycling reservoirs that capture rainwater and irrigation return water, together with wells of limited output. Water quantity is a more important issue for this nursery, but poor water quality has had some negative economic effects. Irrigation return water is filtered and sanitized with chlorine gas before being applied to plants via overhead and micro-irrigation systems. The agrochemical paclobutrazol was monitored for one year in the first operation and plant pathogens were qualified and quantified over two seasons for both production systems. The two operations employ very different water treatment systems based on their access to water, growing methods, land topography, and capital investment. Each operation has experienced different water quantity and quality vulnerabilities, and has addressed these threats using a variety of technologies and management techniques to reduce their impacts.


2020 ◽  
Vol 63 (1) ◽  
pp. 133-140
Author(s):  
Raja Arun kumar ◽  
Srinivasavedantham Vasantha ◽  
Arjun S. Tayade ◽  
Sheriff Anusha ◽  
Ponmani Geetha ◽  
...  

Highlights`Significant reductions in canopy temperature depression (CTD), chlorophyll fluorescence (Fv/Fm), SPAD index, and leaf rolling index were observed under limited irrigation during the grand growth stage of sugarcane.This study highlights the significance of CTD and Fv/Fm as useful physiological tools for selecting sugarcane clones suitable for production under water-limited conditions.Clones Co 10026, Co 13006, Co 85019, Co 62175, Co 86010, and Co 1148 performed better under limited irrigation, and these clones can reduce the amount of irrigation water required for sugarcane production, ensuring water security.Abstract. Sugarcane is one the most important commercial crops in India and globally. The annual water requirement for sugarcane ranges from about 1000 to 2900 mm, and this variation mainly depends on the agro-ecological conditions, cultivation practices, and crop cycle. In a changing climate, the delay or failure of monsoons will have a direct effect on the water available for irrigation in India. Given these constraints, sustaining sugarcane production is challenging. The ICAR-Sugarcane Breeding Institute (ICAR-SBI) in Coimbatore, India, has developed sugarcane genotypes that are resilient to drought stress. To study the role of physiological traits in identifying sugarcane varieties suitable for water-limited conditions, an experiment was conducted at ICAR-SBI with sugarcane clones in field conditions using irrigation at 100% cumulative pan evaporation (I0) and with 50% reductions in the volume and frequency of irrigation (I2). Physiological traits, including canopy temperature depression (CTD), chlorophyll fluorescence (Fv/Fm), soil plant analysis development (SPAD) index, leaf rolling index (LRI), and cane yield, were recorded for sugarcane clones grown under I0 and I2. Significant reductions of 85.9%, 15.4%, 4.9%, 44.9%, and 56.0%, respectively, in CTD, Fv/Fm, SPAD index, LRI, and cane yield were found for water-limited conditions (I2) compared to I0. Fv/Fm showed a decreasing trend in I2 compared to I0 and also showed a significant positive correlation (r = 0.43) with cane yield. CTD varied significantly between the two treatments and also showed a significant positive correlation with cane yield (r = 0.45). Both Fv/Fm and CTD are adaptive traits for water-limited conditions and are useful for screening sugarcane clones suitable for water-limited conditions. Clones Co 10026, Co 13006, Co 85019, Co 62175, and Co 86010 had superior cane yields under water-limited conditions (I2) and better physiological traits. Water deficit is one of the most critical abiotic stresses that affect sugarcane productivity. By growing clones that are water use efficient (Co 10026, Co 13006, Co 85019, Co 62175, and Co 86010), the irrigation water requirement can be reduced for sugarcane production in India. In addition, new sugarcane clones can be developed for water-limited conditions by using the identified clones in breeding programs for water use efficiency, and water security can be achieved for sugarcane grown tropical and sub-tropical areas of India. Keywords: Canopy temperature, Chlorophyll fluorescence, Global water security, Irrigation, Water productivity


Author(s):  
Binaya Kumar Mishra ◽  
Shamik Chakraborty ◽  
Pankaj Kumar ◽  
Chitresh Saraswat

2011 ◽  
Vol 63 (9) ◽  
pp. 1983-1990 ◽  
Author(s):  
S. J. Kenway ◽  
P. A. Lant ◽  
A. Priestley ◽  
P. Daniels

We have only rudimentary understanding of the complex and pervasive connections between water and energy in cities. As water security now threatens energy and economic security, this is a major omission. Understanding the water-energy nexus is necessary if we want to contribute to solving water and energy issues simultaneously; if we want to stop moving problems from one resource dimension to another. This is particularly relevant in the Australian context where energy use for water supplies is forecast to rapidly escalate, growing around 300% from 2007 levels, by 2030. This paper presents a literature review with an aim of characterising the research to date with a particular focus on cities, the major centres of consumption and growth. It systematically analyses a wide range of papers and summarises the diverse objectives, dimensions, and scale of the research to-date together with knowledge gaps. There are many major gaps. These include energy use associated with water in industrial and commercial operations as well as socio-political perspectives. A major gap is the lack of a unifying theoretical framework and consistent methodology for analysis. This is considered a prerequisite for quantitative trans-city comparisons.


Sign in / Sign up

Export Citation Format

Share Document