A New Hybrid Adaptive Cuckoo Search-Squirrel Search Algorithm for Brain MR Image Analysis

Author(s):  
Sanjay Agrawal ◽  
Leena Samantaray ◽  
Rutuparna Panda ◽  
Lingraj Dora
2020 ◽  
Vol 39 (6) ◽  
pp. 8125-8137
Author(s):  
Jackson J Christy ◽  
D Rekha ◽  
V Vijayakumar ◽  
Glaucio H.S. Carvalho

Vehicular Adhoc Networks (VANET) are thought-about as a mainstay in Intelligent Transportation System (ITS). For an efficient vehicular Adhoc network, broadcasting i.e. sharing a safety related message across all vehicles and infrastructure throughout the network is pivotal. Hence an efficient TDMA based MAC protocol for VANETs would serve the purpose of broadcast scheduling. At the same time, high mobility, influential traffic density, and an altering network topology makes it strenuous to form an efficient broadcast schedule. In this paper an evolutionary approach has been chosen to solve the broadcast scheduling problem in VANETs. The paper focusses on identifying an optimal solution with minimal TDMA frames and increased transmissions. These two parameters are the converging factor for the evolutionary algorithms employed. The proposed approach uses an Adaptive Discrete Firefly Algorithm (ADFA) for solving the Broadcast Scheduling Problem (BSP). The results are compared with traditional evolutionary approaches such as Genetic Algorithm and Cuckoo search algorithm. A mathematical analysis to find the probability of achieving a time slot is done using Markov Chain analysis.


2019 ◽  
Vol 8 (4) ◽  
pp. 9465-9471

This paper presents a novel technique based on Cuckoo Search Algorithm (CSA) for enhancing the performance of multiline transmission network to reduce congestion in transmission line to huge level. Optimal location selection of IPFC is done using subtracting line utilization factor (SLUF) and CSA-based optimal tuning. The multi objective function consists of real power loss, security margin, bus voltage limit violation and capacity of installed IPFC. The multi objective function is tuned by CSA and the optimal location for minimizing transmission line congestion is obtained. The simulation is performed using MATLAB for IEEE 30-bus test system. The performance of CSA has been considered for various loading conditions. Results shows that the proposed CSA technique performs better by optimal location of IPFC while maintaining power system performance


Author(s):  
Yang Wang ◽  
Feifan Wang ◽  
Yujun Zhu ◽  
Yiyang Liu ◽  
Chuanxin Zhao

AbstractIn wireless rechargeable sensor network, the deployment of charger node directly affects the overall charging utility of sensor network. Aiming at this problem, this paper abstracts the charger deployment problem as a multi-objective optimization problem that maximizes the received power of sensor nodes and minimizes the number of charger nodes. First, a network model that maximizes the sensor node received power and minimizes the number of charger nodes is constructed. Second, an improved cuckoo search (ICS) algorithm is proposed. This algorithm is based on the traditional cuckoo search algorithm (CS) to redefine its step factor, and then use the mutation factor to change the nesting position of the host bird to update the bird’s nest position, and then use ICS to find the ones that maximize the received power of the sensor node and minimize the number of charger nodes optimal solution. Compared with the traditional cuckoo search algorithm and multi-objective particle swarm optimization algorithm, the simulation results show that the algorithm can effectively increase the receiving power of sensor nodes, reduce the number of charger nodes and find the optimal solution to meet the conditions, so as to maximize the network charging utility.


2021 ◽  
pp. 100572
Author(s):  
Malek Alzaqebah ◽  
Khaoula Briki ◽  
Nashat Alrefai ◽  
Sami Brini ◽  
Sana Jawarneh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document