The Account of Frost Heave and Thawing Processes When Designing Road Embankments in Cold Regions

Author(s):  
I. I. Sakharov ◽  
V. N. Paramonov ◽  
S. A. Kudryavtsev
1996 ◽  
Vol 33 (4) ◽  
pp. 678-680 ◽  
Author(s):  
Robert E Tester ◽  
Paul N Gaskin

In regions of seasonal frost the integrity of pavement structures is dependent on the resistance of base and subbase soils to frost action. This note describes the results of performing the U.S. Army Cold Regions Research and Engineering Laboratory CRREL II laboratory freezing test on a crushed limestone with a varying fines content. Frost heave increased linearly as fines content increased. Under the CRREL frost susceptibility criterion, the crushed gravel was satisfactory with up to 8% fines. A greater fines content resulted in an unsatisfactory classification. Key words: frost susceptibility, fines content, road base.


2020 ◽  
Vol 195 ◽  
pp. 03036
Author(s):  
Snehasis Tripathy ◽  
Osama Mahdi Al-Hussaini ◽  
Peter John Cleall ◽  
Stephen William Rees ◽  
Han-Lin Wang

Soils and industrial waste in various geotechnical engineering applications are expected to experience freezing and thawing processes in various regions of the world where the winter and summer temperatures fluctuate between sub-zero and positive ambient temperatures. In this study laboratory tests were undertaken on three materials (Speswhite kaolin, Pegwell Bay soil and a cement kiln dust). A custom-made test set up was used to carry out the laboratory tests involving freezing and thawing processes. Initially saturated-slurried and compacted-saturated samples of the selected materials were subjected to one cycle of freezing and thawing to study the influence of material type and initial conditions on the one-dimensional frost heave and thaw settlement. The test results showed that the type of material and the initial conditions of the materials prior to the freezing process influenced the frost heave, frost heave rate, velocity of water flow, segregation potential, and thaw settlement. Compacted-saturated materials showed a tendency to exhibit a greater magnitude of frost heave as compared to their saturated-slurried counterparts.


Author(s):  
Xiaoling Wu ◽  
Xiaohua Xiang ◽  
Chao Qiu ◽  
Li Li

Abstract. In cold regions, precipitation, air temperature and snow cover significantly influence soil water, heat transfer, the freezing-thawing processes of the active soil layer, and runoff generation. Hydrological regimes of the world's major rivers in cold regions have changed remarkably since the 1960s, but the mechanisms underlying the changes have not yet been fully understood. Using the basic physical processes for water and heat balances and transfers in snow covered soil, a water-heat coupling model for snow cover and its underlying soil layers was established. We found that freezing-thawing processes can affect the thickness of the active layer, storage capacity for liquid water, and subsequent surface runoffs. Based on calculations of thawing-freezing processes, we investigated hydrological processes at Qumalai. The results show that the water-heat coupling model can be used in this region to provide an understanding of the local movement of hydrological regimes.


2021 ◽  
Vol 329 ◽  
pp. 01090
Author(s):  
Liqing Liang

The frozen soil area in China is more than two thirds of the total territory, so the problem of frost heave is obvious. Especially in northeast, northwest, north China and other cold regions, the problem of frost heave of hydraulic structures is very common. Canal is a common hydraulic structure in agricultural water, which is affected by seasonal frozen soil and may cause problems such as lining damage, seepage and irrigation efficiency. Therefore, this paper mainly summarizes the necessity of research on channel freezingthawing damage, the research direction of channel freezing-thawing damage, and expounds the influence of seasonal frozen soil on freezing and thawing diseases in cold regions by taking the particle size of saturated soil based on channel as an example.


2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Xiaoxiao Luo ◽  
Qinguo Ma ◽  
Fujun Niu ◽  
Wenji Su ◽  
He Hu

Frost heave is the prevailing damage to the embankment in cold regions. It is a challenge to ascertain frost damage behavior of the embankment due to the complication of freezing-thawing process involving water migration, heat convection process of water, ice-water phase transition, and frost heave. To investigate the freezing behavior of the embankment, a hydro-thermo-mechanical numerical model is deduced, and an embankment model test is carried out. Finally, the moisture, temperature, and deformation during the freezing-thawing process are analyzed. The results show that (1) there exist two warm frozen layers and a frozen layer at the bottom of the embankment at the time of the minimum air temperature and at the time of the maximum thaw depth, respectively. (2) Under the drive of temperature gradient, the water migrates and the redistributions occur. The soil in the freezing-thawing front is filled with unfrozen water and ice, and its water content is high, which directly lead to frost heave. (3) The horizontal deformation at the shoulder is larger than those in other zones, which easily leads to denudation damage. Meantime, the deformation difference between the shoulder and middle will lead to the longitudinal cracks and consequently embankment failures. The study will provide a theoretical basis and reference for the design, maintenance and research of embankment in cold regions.


2020 ◽  
Vol 10 (22) ◽  
pp. 8097
Author(s):  
Liang Gao ◽  
Wenqiang Zhao ◽  
Bowen Hou ◽  
Yanglong Zhong

Uneven subgrade frost heave has been a severe problem for the operation of high-speed railways in cold regions. In order to reveal the influencing mechanism of frost heave on the vehicle-track system, a novel FEM (finite element method) model based on an explicit algorithm was proposed. In the novel model, the existence of the leverage effect in slab track, which was caused by frost heave, was realistically reproduced at first, and then the vehicle model started running for evaluating the influence of the frost heave on the whole dynamic system. Results show that the leverage effect plays a key role in analyzing the influence of frost heave on the vehicle-track system, besides for track irregularity and contact loss. Specifically, the leverage effect decreases the stability of the slab track and causes an increase in dynamic irregularity. The roles of the track irregularity and the contact loss in the influencing mechanism were also revealed. With the ratio of wavelength to amplitude increasing, the track irregularity is gradually dominant in the influence mechanism of frost heave on the vehicle-track system. The research could provide a reference for the management and maintenance of the slab track in cold regions.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Feng Ming ◽  
Dong-qing Li

For the construction in cold regions, frost heave and thaw settlement are the two factors which must be taken care of. Considered that a saturated soil column was subjected to an overburden pressure to model the ice lens growing process. A typical process, which coupled water, heat, and stress that happened in a saturated freezing soil column, was simulated by the finite element software. We did the numerical simulation under the same conditions as the experiment tests and then compared the results from temperature, frost heave, frozen structure, water content, and water intake. Result shows that the simulation results match well with the experimental results, and the correctness of the mathematical model is validated. On that basis, frost heave amount under different conditions by changing the temperature boundary and loading boundary is obtained. The frost heave has an optimum temperature gradient. Under the optimum value, the frost heave amount increases with increasing temperature gradient. Above the optimum value, frost heave decreases with increasing temperature gradient. Increasing the overburden pressure, frost heave amount always decreases. These results can provide references for the constrictions in cold regions.


Sign in / Sign up

Export Citation Format

Share Document