scholarly journals Analysis of main points of channel freezing-thawing disease in cold region and influence of channel base soil on the disease

2021 ◽  
Vol 329 ◽  
pp. 01090
Author(s):  
Liqing Liang

The frozen soil area in China is more than two thirds of the total territory, so the problem of frost heave is obvious. Especially in northeast, northwest, north China and other cold regions, the problem of frost heave of hydraulic structures is very common. Canal is a common hydraulic structure in agricultural water, which is affected by seasonal frozen soil and may cause problems such as lining damage, seepage and irrigation efficiency. Therefore, this paper mainly summarizes the necessity of research on channel freezingthawing damage, the research direction of channel freezing-thawing damage, and expounds the influence of seasonal frozen soil on freezing and thawing diseases in cold regions by taking the particle size of saturated soil based on channel as an example.

2012 ◽  
Vol 550-553 ◽  
pp. 2565-2570
Author(s):  
Chang Lei Dai ◽  
Yi Ding Zhang ◽  
Ji Liang Wang ◽  
Xin Xin Li

Frozen soil in cold regions can be divided into 2 types --- seasonal frozen soil and permafrost. Because of the frozen soil layer, there are obvious differences between the characteristics of groundwater seepage in cold regions and normal regions. The paper analyses the disappearance regulation of frozen soil layer and the mechanism of groundwater seepage in the unsaturated zone and saturated zone under the seasonal frozen soil and permafrost. The results show that the frozen soil layer has obvious influence towards soil water seepage in the unsaturated zone during the freezing and thawing process. When the warm period comes, it makes influence of soil moisture conservation in the unsaturated zone. At this time, the freezing porosity is completely filled with the ice of volume expansion. It is equivalent to the impermeable layer that is difficult to receive the vertical recharge. In the permafrost area, the atmospheric precipitation and surface water are major recharge sources to the aquifer, and the aquifer can also receive recharge from groundwater. During the cold season, the surface is frozen and the rainfall recharge source is cut off. It will be unconfined seepage with free surface, and form a saturated zone above the permafrost layer. During the freezing period, with the increase of frozen depth, the aquifer will freeze from top to bottom, and it will convert to a confined aquifer.


1995 ◽  
Vol 32 (3) ◽  
pp. 488-495 ◽  
Author(s):  
Sharon L. Smith ◽  
Peter J. Williams

A major experiment simulating ground freezing around a buried chilled pipeline in a controlled-environment facility provided an opportunity to examine the form and orientation of ice lenses associated with a vertical interface between silt and sand. The heave of the silt decreased towards the interface and ice lenses in the silt were found to dip at an increasing angle in the same direction. Consideration of the thermal regime suggests that the direction of heat flow influences the orientation of the lenses. The interface was irregular and ice lenses at the lower part of the interface were closely aligned to it, indicating that changes in soil texture also influence ice lens orientation. Deformation of ice lenses appears to have occurred in the silt near to the interface. The arrangement of the lenses can be explained by the different thermal properties and thermodynamic behaviour of the two materials and by the mechanical "anchorage" of the sand in which there is no ice lens formation. Cycles of freezing and thawing modify soil structure and produce cumulative residual deformations which are modified by a soil interface. Key words : frost heave, ice lenses, frozen soil, vertical silt–sand interface, chilled pipeline, differential heave.


2014 ◽  
Vol 1065-1069 ◽  
pp. 783-787
Author(s):  
Jin Fang Hou ◽  
Rui Qi Zhang ◽  
Jian Yu

Research on frost heaving of high speed railway subgrade filling in seasonal frozen soil area is developed indoor. Through freezing and thawing strength and frost heaving amount test, the research analyzes factors affecting frost heaving of subgrade filling, points out that water content, fine stuff admixing amount and plasticity of fine-grained soil have relatively large influence on frost heaving, while freezing temperature and freezing and thawing cycle index have relatively small influence. Water content is main factor to have effect on frost heaving of subgrade filling. When the water content reaches to some certain value, even coarse-grained soil can produce considerable frost heaving amount. Therefore, taking effective waterproof and drainage measures is of great importance in subgrade frost heaving prevention and treatment.


2020 ◽  
Vol 57 (10) ◽  
pp. 1581-1594 ◽  
Author(s):  
Fan Yu ◽  
Peijun Guo ◽  
Yuanming Lai ◽  
Dieter Stolle

Although much effort has been made to develop various frost heave models in the past decades, a simple yet versatile model is still needed for engineering applications. This paper presents a method to estimate frost heave in frozen soil using a macroscopic water flux function that extends the segregation potential to make it applicable for both steady state and transient freezing and thawing states. The formation of an individual ice lens is modelled by combining previously developed stress and strain criteria. The water flux function, which includes various factors in accordance with the porosity rate function, can describe the growth of both new and old ice lenses. More importantly, every component of the water flux function is physically explained by the theory of pre-melting dynamics, where all the influencing factors are traced back to their impacts on the ice volume distribution. The performance of the model is demonstrated via simulations of one-dimensional freezing and thawing processes after the model is validated by a specific case from previous literature. Although adequate data are not available for a stricter experimental verification of the model, it is observed that the simulations predict the general course of events together with significant specific features that were identified in previous experimental studies.


2019 ◽  
Vol 44 (3) ◽  
pp. 338-375 ◽  
Author(s):  
Okan Aygün ◽  
Christophe Kinnard ◽  
Stéphane Campeau

Cold region hydrology is conditioned by distinct cryospheric and hydrological processes. While snowmelt is the main contributor to both surface and subsurface flows, seasonally frozen soil also influences the partition of meltwater and rain between these flows. Cold regions of the Northern Hemisphere midlatitudes have been shown to be sensitive to climate change. Assessing the impacts of climate change on the hydrology of this region is therefore crucial, as it supports a significant amount of population relying on hydrological services and subjected to changing hydrological risks. We present an exhaustive review of the literature on historical and projected future changes on cold region hydrology in response to climate change. Changes in snow, soil, and streamflow key metrics were investigated and summarized at the hemispheric scale, down to the basin scale. We found substantial evidence of both historical and projected changes in the reviewed hydrological metrics. These metrics were shown to display different sensitivities to climate change, depending on the cold season temperature regime of a given region. Given the historical and projected future warming during the 21st century, the most drastic changes were found to be occurring over regions with near-freezing air temperatures. Colder regions, on the other hand, were found to be comparatively less sensitive to climate change. The complex interactions between the snow and soil metrics resulted in either colder or warmer soils, which led to increasing or decreasing frost depths, influencing the partitioning rates between the surface and subsurface flows. The most consistent and salient hydrological responses to both historical and projected climate change were an earlier occurrence of snowmelt floods, an overall increase in water availability and streamflow during winter, and a decrease in water availability and streamflow during the warm season, which calls for renewed assessments of existing water supply and flood risk management strategies.


2012 ◽  
Vol 212-213 ◽  
pp. 260-263
Author(s):  
Ying Hao Wang ◽  
Shuo Li

Hetao irrigation area in Inner Mongolia is one of the four major irrigation areas in China, seasonal frozen soil is widely distributed in this area. Irrigation channel engineering experiences seriously freeze-thaw cycle many times in the long winter, its maintenance is the important and difficult point all long in irrigation channel engineering of Hetao irrigation area. For this, we analyze the moisture migration and law of frost heave characteristics of seasonal frozen soil in Hetao irrigation area.


2016 ◽  
Vol 7 (3) ◽  
pp. 611-625 ◽  
Author(s):  
Stefan Hagemann ◽  
Tanja Blome ◽  
Altug Ekici ◽  
Christian Beer

Abstract. Permafrost or perennially frozen ground is an important part of the terrestrial cryosphere; roughly one quarter of Earth's land surface is underlain by permafrost. The currently observed global warming is most pronounced in the Arctic region and is projected to persist during the coming decades due to anthropogenic CO2 input. This warming will certainly have effects on the ecosystems of the vast permafrost areas of the high northern latitudes. The quantification of such effects, however, is still an open question. This is partly due to the complexity of the system, including several feedback mechanisms between land and atmosphere. In this study we contribute to increasing our understanding of such land–atmosphere interactions using an Earth system model (ESM) which includes a representation of cold-region physical soil processes, especially the effects of freezing and thawing of soil water on thermal and hydrological states and processes. The coupled atmosphere–land models of the ESM of the Max Planck Institute for Meteorology, MPI-ESM, have been driven by prescribed observed SST and sea ice in an AMIP2-type setup with and without newly implemented cold-region soil processes. Results show a large improvement in the simulated discharge. On the one hand this is related to an improved snowmelt peak of runoff due to frozen soil in spring. On the other hand a subsequent reduction in soil moisture enables a positive feedback to precipitation over the high latitudes, which reduces the model's wet biases in precipitation and evapotranspiration during the summer. This is noteworthy as soil-moisture–atmosphere feedbacks have previously not been the focus of research on the high latitudes. These results point out the importance of high-latitude physical processes at the land surface for regional climate.


2013 ◽  
Vol 353-356 ◽  
pp. 2445-2449
Author(s):  
Xiang Min Qu ◽  
Hua Zhong ◽  
Xiu Fen Wang ◽  
Bin Zhang

Frost heaving damage of water conservancy project is widespread. In order to research the failure problems of hydraulic soil slope in dark seasonal frozen soil region, remote monitor and manual observation is carried out combined with field test section layout, which including air temperature, earth temperature, frozen depth, the amount of frost heaving and layered water content. It is researched that the rule of frost heave parameters variation and the damage of soil slope during freeze-thaw cycling. That offers theoretical basis and reference for construction of water conservancy project and guidance for engineering practice.


2021 ◽  
Vol 9 ◽  
Author(s):  
Tao Jiang ◽  
Jing-wen Zhu ◽  
Yi Shi

Oil and gas pipelines are critical structures. For pipelines in the seasonal frozen soil area, frost heave of the ground will result in deformation of the pipeline. If the deformation continually increases, it will seriously threaten the pipeline safety. Therefore, it is important to monitor the deformation of the pipeline in the frozen soil area. Since optic frequency–domain reflectometer (OFDR) technology has many advantages in distributed strain measurement, this paper utilized the OFDR technology to measure the distributed strain and use the plane curve reconstruction algorithm to calculate the deformed pipeline shape. To verify the feasibility of this approach, a test was conducted to simulate the pipeline deformation induced by frost heave. Test results showed that the pipeline shape can be reconstructed well via the combination of the OFDR and curve reconstruction algorithm, providing a valuable approach for pipeline deformation monitoring.


Sign in / Sign up

Export Citation Format

Share Document