Disease Feature Extraction and Disease Detection from Paddy Crops Using Image Processing and Deep Learning Technique

Author(s):  
Sunanda Das ◽  
Debanik Roy ◽  
Payel Das
2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Chen Zhao ◽  
Jungang Han ◽  
Yang Jia ◽  
Lianghui Fan ◽  
Fan Gou

Deep learning technique has made a tremendous impact on medical image processing and analysis. Typically, the procedure of medical image processing and analysis via deep learning technique includes image segmentation, image enhancement, and classification or regression. A challenge for supervised deep learning frequently mentioned is the lack of annotated training data. In this paper, we aim to address the problems of training transferred deep neural networks with limited amount of annotated data. We proposed a versatile framework for medical image processing and analysis via deep active learning technique. The framework includes (1) applying deep active learning approach to segment specific regions of interest (RoIs) from raw medical image by using annotated data as few as possible; (2) generative adversarial Network is employed to enhance contrast, sharpness, and brightness of segmented RoIs; (3) Paced Transfer Learning (PTL) strategy which means fine-tuning layers in deep neural networks from top to bottom step by step to perform medical image classification or regression tasks. In addition, in order to understand the necessity of deep-learning-based medical image processing tasks and provide clues for clinical usage, class active map (CAM) is employed in our framework to visualize the feature maps. To illustrate the effectiveness of the proposed framework, we apply our framework to the bone age assessment (BAA) task using RSNA dataset and achieve the state-of-the-art performance. Experimental results indicate that the proposed framework can be effectively applied to medical image analysis task.


2020 ◽  
Vol 10 (16) ◽  
pp. 5582
Author(s):  
Xiaochen Yuan ◽  
Tian Huang

In this paper, a novel approach that uses a deep learning technique is proposed to detect and identify a variety of image operations. First, we propose the spatial domain-based nonlinear residual (SDNR) feature extraction method by constructing residual values from locally supported filters in the spatial domain. By applying minimum and maximum operators, diversity and nonlinearity are introduced; moreover, this construction brings nonsymmetry to the distribution of SDNR samples. Then, we propose applying a deep learning technique to the extracted SDNR features to detect and classify a variety of image operations. Many experiments have been conducted to verify the performance of the proposed approach, and the results indicate that the proposed method performs well in detecting and identifying the various common image postprocessing operations. Furthermore, comparisons between the proposed approach and the existing methods show the superiority of the proposed approach.


2019 ◽  
Vol 9 (7) ◽  
pp. 1385 ◽  
Author(s):  
Luca Donati ◽  
Eleonora Iotti ◽  
Giulio Mordonini ◽  
Andrea Prati

Visual classification of commercial products is a branch of the wider fields of object detection and feature extraction in computer vision, and, in particular, it is an important step in the creative workflow in fashion industries. Automatically classifying garment features makes both designers and data experts aware of their overall production, which is fundamental in order to organize marketing campaigns, avoid duplicates, categorize apparel products for e-commerce purposes, and so on. There are many different techniques for visual classification, ranging from standard image processing to machine learning approaches: this work, made by using and testing the aforementioned approaches in collaboration with Adidas AG™, describes a real-world study aimed at automatically recognizing and classifying logos, stripes, colors, and other features of clothing, solely from final rendering images of their products. Specifically, both deep learning and image processing techniques, such as template matching, were used. The result is a novel system for image recognition and feature extraction that has a high classification accuracy and which is reliable and robust enough to be used by a company like Adidas. This paper shows the main problems and proposed solutions in the development of this system, and the experimental results on the Adidas AG™ dataset.


Electronics ◽  
2021 ◽  
Vol 10 (17) ◽  
pp. 2064
Author(s):  
Javed Rashid ◽  
Imran Khan ◽  
Ghulam Ali ◽  
Sultan H. Almotiri ◽  
Mohammed A. AlGhamdi ◽  
...  

Potato leaf disease detection in an early stage is challenging because of variations in crop species, crop diseases symptoms and environmental factors. These factors make it difficult to detect potato leaf diseases in the early stage. Various machine learning techniques have been developed to detect potato leaf diseases. However, the existing methods cannot detect crop species and crop diseases in general because these models are trained and tested on images of plant leaves of a specific region. In this research, a multi-level deep learning model for potato leaf disease recognition has developed. At the first level, it extracts the potato leaves from the potato plant image using the YOLOv5 image segmentation technique. At the second level, a novel deep learning technique has been developed using a convolutional neural network to detect the early blight and late blight potato diseases from potato leaf images. The proposed potato leaf disease detection model was trained and tested on a potato leaf disease dataset. The potato leaf disease dataset contains 4062 images collected from the Central Punjab region of Pakistan. The proposed deep learning technique achieved 99.75% accuracy on the potato leaf disease dataset. The performance of the proposed techniques was also evaluated on the PlantVillage dataset. The proposed technique is also compared with the state-of-the-art models and achieved significantly concerning the accuracy and computational cost.


Author(s):  
Vempati Ramsanthosh ◽  
Anati Sai Laxmi ◽  
Chepuri Sai Abhinay ◽  
Vadepally Santosh ◽  
Vybhav Kothareddy ◽  
...  

Identifying of the plant diseases is essential in prevention of yield and volume losses in agriculture Product. Studies of plant diseases mean studies of visually observable patterns on the plant. Health surveillance and detecting diseases in plants is essential for sustainable development agriculture. It is very difficult to monitor plant diseases manually. It requires a lot of experiences in work, expertise in these field plant diseases and also requires excessive processing time. Therefore; image processing is used to detect plant diseases. Disease detection includes steps such as acquisition, image Pre-processing, image segmentation, feature extraction and Classification. We describe these methods for the detection of plant diseases on the basis of their leaf images; automatic detection of plant disease is done by the image processing and machine learning. The different leaf images of plant disease are collected and feature extracted of the various machine learning methods.


2021 ◽  
Author(s):  
Hemlata Jain ◽  
Ajay Khunteta ◽  
Sumit Private Shrivastav

Abstract Machine Learning and Deep learning classification has become an important topic in the area of Telecom Churn Prediction. Researchers have come out with very efficient experiments for Churn Prediction and have given a new direction to the telecommunication Industry to save their customers. Companies are eagerly developing the models for predicting churn and putting their efforts to save the potential churners. Therefore, for a better churn prediction model, finding the factors of churn is very important. This study is aiming to find the factors of user’s churn by evaluating their past service usage details. For this purpose, study is taking the advantage of feature importance, feature normalisation, feature correlation and feature extraction. After feature selection and extraction this study performing seven different experiments on the dataset to bring out the best results and compared the techniques. First Experiment includes a hybrid model of Decision tree and Logistic Regression, second experiment include PCA with Logistic Regression and Logit Boost, third experiment using a Deep Learning Technique that is CNN-VAE (Convolutional Neural Network with Variational Autoencoder), Fourth, fifth, sixth and seventh experiments was done on Logistic Regression, Logit Boost, XGBoost and Random Forest respectively. First four experiments are hybrid models and rest are using standalone techniques. The Orange dataset was used in this technique which has 3333 subscriber’s entries and 21 features. On the other hand, these experiments are compared with already existing models that have been developed in literature studies. The performance was evaluated using Accuracy, Precision, Recall rate, F-measure, Confusion Matrix, Marco Average and Weighted Average. This study proved to get better results as compared to old models. Random Forest outperformed in this study by achieving 95% Accuracy and all other experiments also produced very good results. The study states the importance of data mining techniques for a churn prediction model and proposes a very good comparison model where all machine Learning Standalone techniques, Deep Learning Technique and hybrid models with Feature Extraction tasks are being used and compared on the same dataset to evaluate the techniques performance better.


Sign in / Sign up

Export Citation Format

Share Document