Inertia Effects in the Planar Squeeze Flow of a Bingham Fluid: A Matched Asymptotics Analysis

Author(s):  
Pavan Kumar Singeetham ◽  
Vishwanath Kadaba Puttanna
2019 ◽  
Vol 263 ◽  
pp. 154-175 ◽  
Author(s):  
Pavan Kumar Singeetham ◽  
Vishwanath Kadaba Puttanna

1999 ◽  
Vol 122 (4) ◽  
pp. 872-875 ◽  
Author(s):  
R. Usha and ◽  
P. Vimala

An analysis is presented for the laminar squeeze flow of an incompressible powerlaw fluid between parallel plane annuli using the modified lubrication theory and energy integral method. The local and the convective inertia of the flow are considered in the investigation. Analytical expressions for the load carrying capacity of the squeeze film are obtained using both the methods and are compared with those based on the assumption of inertialess flow. It is observed that the inertia correction in the load carrying capacity is more significant for pseudo-plastic fluids, n<1.[S0742-4787(00)00504-X]


2002 ◽  
Vol 124 (4) ◽  
pp. 865-869 ◽  
Author(s):  
R. Usha and ◽  
P. Vimala

The laminar squeeze flow of a viscous incompressible fluid between a flat circular disk and an axisymmetric curved disk of arbitrary shape is investigated theoretically using modified lubrication theory. The characteristics of squeeze film are investigated through inertia and curvature effects on the normal force exerted on the upper curved moving disk described by an exponential function for the sinusoidal squeeze motion. The constant force squeezing state is also examined. It has been observed that the load carrying capacity of the curved squeeze film is strongly influenced by the curvature and inertia effects.


Author(s):  
Drew A. Davidson ◽  
Gary L. Lehmann

Crucial to the development and characterization of thermal interface materials (TIMs) is an understanding of the squeeze flow process that is commonly used to form thin bond layers in micro-electronic assemblies. A single model TIM, a dense, fairly monomodal suspension of submicron alumina particles suspended in a silicone-based resin, is first characterized as a Bingham fluid using a parallel disk rotational viscometer. Next, the model TIM is squeezed from ∼1 mm initial thickness to ∼.01 mm limiting thickness under nominally constant applied load (68 to 345 kPa) between 20 mm diameter aluminum plates in an axial compression test apparatus (the type commonly used for materials testing). The test plates are flat (∼10 μm flatness deviation over the plate) and smooth (Ra ∼ 20 nm), and are fixed in the test column with epoxy for optimum parallelism. Bond layer thickness is estimated using the LVDT built into the compression tester. The thickness measurement resolution is limited by LVDT noise of 10–20 microns. Squeezing forces are well above the ∼.02 N noise level of the 100 N load cell. Of the test system compliance, inertia, and friction, only the compliance is significant to our testing, and is corrected for. Squeeze flow tests of Newtonian standards are used to qualify the test process. In the case of the model paste, Bingham fluid model parameters from rotational viscometry are used in a lubrication model of squeeze flow that shows good agreement with the measured gap vs. time behavior during squeezing. Improved agreement is obtained by including plate flatness deviation and time-dependent force in the lubrication model. Parallel disk viscometry and squeeze flow testing of the base resin of the model TIM shows Newtonian behavior.


2015 ◽  
Vol 225 ◽  
pp. 1-9 ◽  
Author(s):  
Lorenzo Fusi ◽  
Angiolo Farina ◽  
Fabio Rosso
Keyword(s):  

2004 ◽  
Vol 22 (1) ◽  
pp. 1-20 ◽  
Author(s):  
HONGYAN LI ◽  
WENBIN HUANG ◽  
YONG XU ◽  
GUOPING LIAN

2016 ◽  
Vol 138 (3) ◽  
Author(s):  
Nadim A. Diab ◽  
Issam A. Lakkis

This paper presents direct simulation Monte Carlo (DSMC) numerical investigation of the dynamic behavior of a gas film in a microbeam. The microbeam undergoes large amplitude harmonic motion between its equilibrium position and the fixed substrate underneath. Unlike previous work in literature, the beam undergoes large displacements throughout the film gap thickness and the behavior of the gas film along with its impact on the moving microstructure (force exerted by gas on the beam's front and back faces) is discussed. Since the gas film thickness is of the order of few microns (i.e., 0.01 < Kn < 1), the rarefied gas exists in the noncontinuum regime and, as such, the DSMC method is used to simulate the fluid behavior. The impact of the squeeze film on the beam is investigated over a range of frequencies and velocity amplitudes, corresponding to ranges of dimensionless flow parameters such as the Reynolds, Strouhal, and Mach numbers on the gas film behavior. Moreover, the behavior of compressibility pressure waves as a function of these dimensionless groups is discussed for different simulation case studies.


Sign in / Sign up

Export Citation Format

Share Document