3D Cylindrical Obstacle Avoidance Using the Minimum Distance Technique

Author(s):  
Krishna Raghuwaiya ◽  
Jito Vanualailai ◽  
Jai Raj
2005 ◽  
Vol 14 (3) ◽  
pp. 345-365 ◽  
Author(s):  
Sangyoon Lee ◽  
Gaurav Sukhatme ◽  
Gerard Jounghyun Kim ◽  
Chan-Mo Park

The problem of teleoperating a mobile robot using shared autonomy is addressed: An onboard controller performs close-range obstacle avoidance while the operator uses the manipulandum of a haptic probe to designate the desired speed and rate of turn. Sensors on the robot are used to measure obstacle-range information. A strategy to convert such range information into forces is described, which are reflected to the operator's hand via the haptic probe. This haptic information provides feedback to the operator in addition to imagery from a front-facing camera mounted on the mobile robot. Extensive experiments with a user population both in virtual and in real environments show that this added haptic feedback significantly improves operator performance, as well as presence, in several ways (reduced collisions, increased minimum distance between the robot and obstacles, etc.) without a significant increase in navigation time.


Author(s):  
Troy Harden ◽  
Chetan Kapoor ◽  
Delbert Tesar

Motion planning in cluttered environments is a weakness of current robotic technology. While research addressing this issue has been conducted, few efforts have attempted to use minimum distance rates of change in motion planning. Geometric influence coefficients provide extraordinary insight into the interactions between a robot and its environment. They isolate the geometry of distance functions from system inputs and make the higher-order properties of minimum distance magnitudes directly available. Knowledge of the higher order properties of minimum distance magnitudes can be used to predict the future obstacle avoidance, path planning, and/or target acquisition state of a manipulator system and aid in making intelligent motion planning decisions. Here, first and second order geometric influence coefficients for minimum distance magnitudes are rigorously developed for several simple modeling primitives. A general method for similar derivations using new primitives and an evaluation of finite difference approximations versus analytical second order coefficient calculations are presented. Two application examples demonstrate the utility of minimum distance magnitude influence coefficients in motion planning.


ROBOT ◽  
2013 ◽  
Vol 35 (1) ◽  
pp. 17 ◽  
Author(s):  
Qingxuan JIA ◽  
Qianru ZHANG ◽  
Xin GAO ◽  
Gang CHEN ◽  
Jingzhou SONG

2019 ◽  
Vol 10 (4) ◽  
pp. 72
Author(s):  
Guoxing Bai ◽  
Chen Liang ◽  
Yu Meng ◽  
Li Liu ◽  
Weidong Luo ◽  
...  

Obstacle avoidance is a core part of the autonomous driving of off-road vehicles, such as semi-trailers. Due to the long length of semi-trailers, the traditional obstacle avoidance controller based on the circumcircle model can ensure that there is no collision between the semi-trailer and the obstacle, but it also greatly reduces the passable area. To solve this problem, we propose a new obstacle avoidance model. In this model, the distance between the obstacle and the middle line of semi-trailers is used as the indicator of obstacle avoidance. Based on this model, we design a new obstacle avoidance controller for semi-trailers. The simulation results show that the proposed controller can ensure that no collision occurs between the semi-trailer and the obstacle. The minimum distance between the obstacle center and the semi-trailer body trajectory is greater than the sum of the obstacle radius and the safety margin. Compared with the traditional obstacle avoidance controller based on the circumcircle model, the proposed controller greatly reduces the error between the semi-trailer and the reference path during obstacle avoidance.


2015 ◽  
Vol 1 (1) ◽  
pp. 13-20
Author(s):  
Hamid Reza Samadi ◽  
Mohammad Reza Samadi

Due to the development of cities as well as rapid population growth, urban traffic is increasing nowadays. Hence, to improve traffic flow, underground structures such as metro, especially in metropolises, are inevitable. This paper is a research on the twin tunnels Of Isfahan's metro between Shariaty station and Azadi station from the North towards the South. In this study, simultaneous drilling of subway's twin tunnels is simulated by means of Finite Difference Method (FDM) and FLAC 3D software. Moreover, the lowest distance between two tunnels is determined in a way that the Law of Super Position could be utilized to manually calculate the amount of surface subsidence, resulted by drilling two tunnels, by employing the results of the analysis of single tunnels without using simultaneous examination and simulation. In this paper, this distance is called "effective distance". For this purpose, first, the optimum dimensions of the model is chosen and then, five models with optimum dimensions will be analyzed separately, each of which in three steps. The results of analyses shows that the proportions (L/D) greater than or equal 2.80, the Law of Super Position can be applied for prediction of surface subsidence, caused by twin tunnels' construction


Author(s):  
Jesse Berger ◽  
Cory Carson ◽  
Massood Towhidnejad ◽  
Richard Stansbury

Sign in / Sign up

Export Citation Format

Share Document