Design of Oblique Leaf-Spring Suspension Mechanism for Heavy Vehicles

Author(s):  
Jing-Shan Zhao ◽  
Hong-Wei Song ◽  
Yun Zhang ◽  
Xiang Liu
Author(s):  
T E C Potter ◽  
D Cebon ◽  
D J Cole

Two methods for assessing the road damaging potential of heavy vehicles are described in this paper. The methods use a simple laboratory test to characterize vehicle dynamics. This information is then used to predict the dynamic tyre forces generated by the vehicle for typical highway conditions. A quarter car laboratory test rig fitted with a leaf spring suspension is used to investigate these methods. Step inputs are used to excite the rig, and various sensors measure the response. A linear technique using the convolution algorithm is investigated initially. A non-linear method using parameter estimation is then examined. The accuracy of both systems is determined by comparing tyre force data measured on the test rig with predicted tyre forces.


2020 ◽  
Vol 10 (4) ◽  
pp. 1293 ◽  
Author(s):  
Leilei Zhao ◽  
Yunshan Zhang ◽  
Yuewei Yu ◽  
Changcheng Zhou ◽  
Xiaohan Li ◽  
...  

The lightweight design of trucks is of great importance to enhance the load capacity and reduce the production cost. As a result, the taper-leaf spring will gradually replace the multi-leaf spring to become the main elastic element of the suspension for trucks. To reveal the changes of the handling stability after the replacement, the simulations and comparison of the taper-leaf and the multi-leaf spring suspensions with the same vertical stiffness for trucks were conducted. Firstly, to ensure the same comfort of the truck before and after the replacement, an analytical method of replacing the multi-leaf spring with the taper-leaf spring was proposed. Secondly, the effectiveness of the method was verified by the stiffness tests based on a case study. Thirdly, the dynamic models of the taper-leaf spring and the multi-leaf spring with the same vertical stiffness are established and validated, respectively. Based on this, the dynamic models of the truck before and after the replacement were established and verified by the steady static circular test, respectively. Lastly, the handling stability indexes for the truck were compared by the simulations of the drift test, the ramp steer test, and the step steer test. The results show that the yaw rate of the truck almost does not change, the steering wheel moment decreases, the vehicle roll angle obviously increases, and the vehicle side slip angle slightly increases after the replacement. Thus, the truck with the taper-leaf spring suspension has better steering portability, however, its handling stability performs worse.


2017 ◽  
Vol 3 (2/3/4) ◽  
pp. 276
Author(s):  
Andrea Airale ◽  
Alessandro Ferraris ◽  
Shuang Xu ◽  
Lorenzo Sisca ◽  
Paolo Massai

2017 ◽  
Vol 3 (2/3/4) ◽  
pp. 276
Author(s):  
Lorenzo Sisca ◽  
Andrea Airale ◽  
Paolo Massai ◽  
Shuang Xu ◽  
Alessandro Ferraris

2011 ◽  
Vol 63-64 ◽  
pp. 478-481
Author(s):  
Jin Sheng Qiu ◽  
Jie Meng

By the universal testing machine and special fixture, the leaf spring suspension was tested for deformation, and based on nonlinear finite element theory, the suspension was analyzed. The calculation result is coinciding with test result.The finite element model established could be applied to design calculation and parameter optimization of leaf spring suspension.


2021 ◽  
Vol 10 (2) ◽  
pp. 141
Author(s):  
Khoirur Rohman ◽  
Rika Dwi Hidayatul Qoryah ◽  
Aris Zainul Muttaqin ◽  
Santoso Mulyadi

Fish Car Unej (FCU) Mudskip is a car designed with a rural terrain system, especially for fishing transportation. FCU Mudskip uses leaf spring suspension at the rear to support the weight of the vehicle, that is leaning towards the rear. The load of the vehicle is inclined to the rear due to the car carrying system in the form of fish and water. This conveying system can cause leaf spring failure. Therefore, this study aims to determine the value of stress, strain and cycle on leaf springs. Ansys 18.1 software was used to obtain stress, strain, and leaf spring cycle values with a thickness of 7 mm, 10 mm, and 13 mm. The value of stress on leaf springs with thickness 7 is 124,31 x 106 N/m2; thickness 10 mm is 74,92 x 106 N/m2; thickness 13 mm is 48,08 x 106N/m2; the value of strain on leaf springs with a thickness of 7 mm is 0,00075; a thickness of 10 mm is 0,00045; a thickness of 13 mm is 0,00029; Acceptable cycles of leaf springs are 7 mm thick is 69206 cycles, 10 mm is 77833 cycles, and 13 mm thick is 93054 cycles. Leaf springs with a thickness of 13 mm are the most optimal leaf springs because they can receive the most cycles of 93054 cycles, according to the function of leaf springs as vibration dampers.


2006 ◽  
Author(s):  
Uday Prasade ◽  
Sudhakar Medepalli ◽  
Daniel Moore ◽  
Rajesh N. Rao

Author(s):  
Srinivas Koushik Gundimeda ◽  
Selin Kunc ◽  
John A. Gallagher ◽  
Roselita Fragoudakis

Glass Fiber Reinforced Polymer (GFRP) beams have shown over a 20% decrease in weight compared to more traditional materials without affecting system performance or fatigue life. These beams are being studied for use in automobile leaf-spring suspension systems to reduce the overall weight of the car therefore increasing fuel efficiency. These systems are subject to large amplitude mechanical vibrations at relatively constant frequencies, making them an ideal location for potential energy scavenging applications. This study analyses the effect on performance of GFRP beams by substituting various composite layers with piezoelectric fiber layers and the results on deflection and stiffness. Maximum deflection and stress in the beam is calculated for varying the piezoelectric fiber layer within the beam. Initial simulations of a simply supported multimorph beam were run in ABAQUS/CAE. The beam was designed with symmetric piezoelectric layers sandwiching a layer of S2-glass fiber reinforced polymer and modeled after traditional mono leaf-spring suspension designs with total dimensions 1480 × 72 × 37 mm3, with 27 mm camber. Both piezoelectric and GFRP layers had the same dimensions and initially were assumed to have non-directional bulk behavior. The loading of the beam was chosen to resemble loading of a leaf spring, corresponding to the stresses required to cycle the leaf at a stress ratio between R = 0.2 and 0.4, common values in heavy-duty suspension fatigue analysis. The maximum stresses accounted for are based on the monotonic load required to set the bottom leaf surface under tension. These results were then used in a fiber orientation optimization algorithm in Matlab. Analysis was conducted on a general stacking sequence [0°/45°]s, and stress distributions for cross ply [0°/90°]s, and angle ply [+45°/−45°]s were examined. Fiber orientation was optimized for both the glass fiber reinforced polymer layer to maximize stiffness, and the piezoelectric fiber layers to simultaneously minimize the effect on stiffness while minimizing deflection. Likewise, these fibers could be activated through the application of electric field to increase or decrease the stiffness of the beam. The optimal fiber orientation was then imported back into the ABAQUS/CAE model for a refined simulation taking into account the effects of fiber orientation on each layer.


Author(s):  
D J Cole ◽  
D Cebon

A test rig for measuring the quasi-static performance of tandem suspensions in the laboratory is described. Measurements on a standard tandem leaf-spring suspension show it to have high effective stiffness in bounce and poor static load equalization. A method for eliminating the spring-end friction is investigated, and found to improve the performance significantly. A two-dimensional articulated vehicle simulation is validated with measurements from a test vehicle. The simulation is then used to study the effect on dynamic tyre forces of three modifications to the trailer suspension: softer springs; elimination of spring-end friction; and hydraulic dampers. The r.m.s. dynamic loads generated by the trailer axles are predicted to decrease by approximately 31 per cent and the theoretical road damage is predicted to decrease by about 13 per cent. The trailer suspension of the test vehicle is adapted to incorporate the three modifications and the measured reductions in dynamic tyre forces are found to be about half those predicted by the simulation.


Sign in / Sign up

Export Citation Format

Share Document