scholarly journals ANALISIS PENGARUH TEBAL PLAT TERHADAP KARAKTERISTIK MEKANIK PEGAS DAUN PADA PROTOTIPE MOBIL FISH CAR UNEJ (FCU) MUDSKIP

2021 ◽  
Vol 10 (2) ◽  
pp. 141
Author(s):  
Khoirur Rohman ◽  
Rika Dwi Hidayatul Qoryah ◽  
Aris Zainul Muttaqin ◽  
Santoso Mulyadi

Fish Car Unej (FCU) Mudskip is a car designed with a rural terrain system, especially for fishing transportation. FCU Mudskip uses leaf spring suspension at the rear to support the weight of the vehicle, that is leaning towards the rear. The load of the vehicle is inclined to the rear due to the car carrying system in the form of fish and water. This conveying system can cause leaf spring failure. Therefore, this study aims to determine the value of stress, strain and cycle on leaf springs. Ansys 18.1 software was used to obtain stress, strain, and leaf spring cycle values with a thickness of 7 mm, 10 mm, and 13 mm. The value of stress on leaf springs with thickness 7 is 124,31 x 106 N/m2; thickness 10 mm is 74,92 x 106 N/m2; thickness 13 mm is 48,08 x 106N/m2; the value of strain on leaf springs with a thickness of 7 mm is 0,00075; a thickness of 10 mm is 0,00045; a thickness of 13 mm is 0,00029; Acceptable cycles of leaf springs are 7 mm thick is 69206 cycles, 10 mm is 77833 cycles, and 13 mm thick is 93054 cycles. Leaf springs with a thickness of 13 mm are the most optimal leaf springs because they can receive the most cycles of 93054 cycles, according to the function of leaf springs as vibration dampers.

Author(s):  
Mohamed AA Abdelkareem ◽  
Mostafa M Makrahy ◽  
Ali M Abd-El-Tawwab ◽  
ASA EL-Razaz ◽  
Mohamed Kamal Ahmed Ali ◽  
...  

Heavy trucks are mostly used for international transportations, with longer highways and long driving hours contributing to corresponding increases in the driver’s fatigue that is related to accidents. Therefore, this study aims to improve the truck ride performance using multistage leaf springs and semi-active suspension for the driver seat. This analytical study describes the influence of the truck main suspensions on the performance indices analytically using MATLAB Simulink for different loading conditions in three case studies: fully laden articulated truck (case A), unladen truck (case B), and empty semi-trailer and a multistage leaf springs is considered after designing the main leaf spring stiffness based on particle swarm optimization (case C). This study exhibits a contribution based on the fact that changing the trailer cargo weight has considerable effects on the natural frequency of the vibration modes of the vehicle system, particularly for articulated carriage. Subsequently, the influence of the dynamic interaction of an articulated vehicle between the semitrailer and the tractor on its ride behavior has been investigated. The model has also predicted the effect of total trailer cargo on performance indices for 13 degrees of freedom model of a 6-axle articulated truck semi-trailer vehicle with a random road excitation. Additionally, a semi-active driver seat suspension based on skyhook strategy and seat passive suspension are compared in terms of the power spectral density and root mean square values. The results showed that the truck ride performance is improved significantly, and all the acceleration responses are suppressed dramatically when a designed multistage leaf spring suspension is considered in case C. The current analysis demonstrated that using specific and adjustable suspension parameters can positively enhance the riding behavior of the unladen vehicle. The results showed that the cab, tractor, and trailer acceleration improved by 22%, 21%, and 28%, respectively, which provides a comfort driving trip essentially for long distance traveling.


2021 ◽  
Author(s):  
Avinash R Kulkarni ◽  
Farook B Sayyad

An automobile leaf spring suspension shackle is a mechanism which allows the changes in the length of the leaf spring. It is a part of suspension system and helps leaf spring elasticity. The arrangement tends to tensile, shear and static loads. Finite element analysis (FEA) carried out at static conditions with different load conditions with different materials of shackle. Stress, strain and deformation analysis is observed at high stress designs. Solid work model is carried out in the analysis. The analysis is compared with different loading conditions with different materials and observed stress, strain, deformation in overall zones has been studied.


2014 ◽  
Vol 591 ◽  
pp. 47-50 ◽  
Author(s):  
S. Rajesh ◽  
G.B. Bhaskar

Leaf springs are the traditional suspension elements, occupying a vital position in the automobile industry. This paper deals us the replacement of existing steel leaf spring by composite leaf spring. The dimensions of existing middle steel leaf spring of commercial vehicle (Tata ace mini truck) were taken and fabricated using a specially designed die. Single leaf of the suspension springs, each made up composite with bidirectional carbon fiber reinforced plastic (CFRP), bidirectional glass fiber reinforced plastic (GFRP) and hybrid glass-carbon fiber reinforced plastic (G-CFRP), was fabricated by hand layup process. It is to be mentioned here that the cross sectional area of the composite spring same as the metallic spring. A low velocity impact test rig was fabricated in the laboratory with loading set up. The composite leaf springs were tested with the low velocity impact test rig. By using the low velocity impact test rig, the deflection due to various drop height were measured.


Author(s):  
Junhong Zhang ◽  
Feiqi Long ◽  
Hongjie Jia ◽  
Jiewei Lin

Abstract Leaf springs play an important role in the handling stability and ride comfort of vehicle. End rubber gaskets are widely used to reduce the friction between leaves, but they also have considerable effect on the stiffness of the suspension assembly. The ride comfort may deteriorate with the stiffness of leaf spring changes. In this paper the influence of the end rubber gasket on the static stiffness performance of a parabolic leaf spring is studied. A finite element model of the leaf spring is developed and verified against the static stiffness test. Effects of the end rubber gasket parameters on the static stiffness of the leaf spring are analyzed based on an orthogonal experiment. The sensitivities of the five parameters are identified including the width, the length, the end thickness, the tail thickness and the distance to the end of the middle leaf. It is found that the contributions can be ranked in descending order as the tail thickness, the end thickness, the distance from end rubber gasket to the end of Leaf 2, and the width and length. The first two factors are considered of significant effects on the leaf spring stiffness. According to single-factor analysis, it is found that under the same load, as the tail thickness and the end thickness increase, the maximum deformation of the rubber gasket decreases, the stiffness of the rubber gasket increases, and the stiffness of the leaf spring increases, which provides a reference for the forward design of the end rubber gasket and the stiffness matching of leaf springs.


2020 ◽  
Vol 10 (4) ◽  
pp. 1293 ◽  
Author(s):  
Leilei Zhao ◽  
Yunshan Zhang ◽  
Yuewei Yu ◽  
Changcheng Zhou ◽  
Xiaohan Li ◽  
...  

The lightweight design of trucks is of great importance to enhance the load capacity and reduce the production cost. As a result, the taper-leaf spring will gradually replace the multi-leaf spring to become the main elastic element of the suspension for trucks. To reveal the changes of the handling stability after the replacement, the simulations and comparison of the taper-leaf and the multi-leaf spring suspensions with the same vertical stiffness for trucks were conducted. Firstly, to ensure the same comfort of the truck before and after the replacement, an analytical method of replacing the multi-leaf spring with the taper-leaf spring was proposed. Secondly, the effectiveness of the method was verified by the stiffness tests based on a case study. Thirdly, the dynamic models of the taper-leaf spring and the multi-leaf spring with the same vertical stiffness are established and validated, respectively. Based on this, the dynamic models of the truck before and after the replacement were established and verified by the steady static circular test, respectively. Lastly, the handling stability indexes for the truck were compared by the simulations of the drift test, the ramp steer test, and the step steer test. The results show that the yaw rate of the truck almost does not change, the steering wheel moment decreases, the vehicle roll angle obviously increases, and the vehicle side slip angle slightly increases after the replacement. Thus, the truck with the taper-leaf spring suspension has better steering portability, however, its handling stability performs worse.


2017 ◽  
Vol 3 (2/3/4) ◽  
pp. 276
Author(s):  
Andrea Airale ◽  
Alessandro Ferraris ◽  
Shuang Xu ◽  
Lorenzo Sisca ◽  
Paolo Massai

2020 ◽  
Vol 12 ◽  
pp. 184797902094243
Author(s):  
Tauseef Aized ◽  
Muhammad Ahmad ◽  
Muhammad Haris Jamal ◽  
Asif Mahmood ◽  
Syed Ubaid ur Rehman ◽  
...  

Nowadays human safety and comfort are the most considerable parameters in designing and manufacturing of a vehicle, that is why every organization ensures the quality and reliability of components used in the vehicle. Leaf spring is also a component of vehicle which plays an important role in human safety and comfort. It acts as a structural member and an integral part of suspension system. It is important to eliminate the failures in designing and manufacturing process of leaf springs because of its importance in functionality and safety of vehicle. In this research, failure mode and effects analysis has been used to analyze and reduce the risks of 42 possible failures that can occur in automotive leaf spring. It starts from determining, classifying, and analyzing all potential failures and then rating them with the help numeric scores. The four numeric scores namely severity, occurrence, detection, and Risk Priority Number (RPN) are used to find the high potential failures of semi-elliptical leaf springs. In the end, actions are recommended for RPN greater than 250, to increase quality and reliably of product.


2017 ◽  
Vol 3 (2/3/4) ◽  
pp. 276
Author(s):  
Lorenzo Sisca ◽  
Andrea Airale ◽  
Paolo Massai ◽  
Shuang Xu ◽  
Alessandro Ferraris

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Vinkel Kumar Arora ◽  
Gian Bhushan ◽  
M. L. Aggarwal

The experimental fatigue life prediction of leaf springs is a time consuming process. The engineers working in the field of leaf springs always face a challenge to formulate alternate methods of fatigue life assessment. The work presented in this paper provides alternate methods for fatigue life assessment of leaf springs. A 65Si7 light commercial vehicle leaf spring is chosen for this study. The experimental fatigue life and load rate are determined on a full scale leaf spring testing machine. Four alternate methods of fatigue life assessment have been depicted. Firstly by SAE spring design manual approach the fatigue test stroke is established and by the intersection of maximum and initial stress the fatigue life is predicted. The second method constitutes a graphical method based on modified Goodman’s criteria. In the third method codes are written in FORTRAN for fatigue life assessment based on analytical technique. The fourth method consists of computer aided engineering tools. The CAD model of the leaf spring has been prepared in solid works and analyzed using ANSYS. Using CAE tools, ideal type of contact and meshing elements have been proposed. The method which provides fatigue life closer to experimental value and consumes less time is suggested.


Sign in / Sign up

Export Citation Format

Share Document