Oxidative Stress Targeted Therapies for the Treatment of Acute Myeloid Leukemia

2021 ◽  
pp. 1-10
Author(s):  
Ajit Kumar Rai ◽  
Neeraj Kumar Satija
2021 ◽  
Vol 10 (7) ◽  
pp. 1349
Author(s):  
Kamila Czubak-Prowizor ◽  
Jacek Trelinski ◽  
Paulina Stelmach ◽  
Piotr Stelmach ◽  
Agnieszka Madon ◽  
...  

Chronic oxidative stress (OS) can be an important factor of acute myeloid leukemia (AML) progression; however, there are no data on the extent/consequence of OS after transfusion of packed red blood cells (pRBCs) and platelet concentrates (PCs), which are commonly used in the treatment of leukemia-associated anemia and thrombocytopenia. We aimed to investigate the effects of pRBC/PC transfusion on the OS markers, i.e., thiol and carbonyl (CO) groups, 3-nitrotyrosine (3-NT), thiobarbituric acid reactive substances (TBARS), advanced glycation end products (AGE), total antioxidant capacity (TAC), SOD, GST, and LDH, in the blood plasma of AML patients, before and 24 h post-transfusion. In this exploratory study, 52 patients were examined, of which 27 were transfused with pRBCs and 25 with PCs. Age-matched healthy subjects were also enrolled as controls. Our results showed the oxidation of thiols, increased 3-NT, AGE levels, and decreased TAC in AML groups versus controls. After pRBC transfusion, CO groups, AGE, and 3-NT significantly increased (by approximately 30, 23, and 35%; p < 0.05, p < 0.05, and p < 0.01, respectively) while thiols reduced (by 18%; p < 0.05). The PC transfusion resulted in the raise of TBARS and AGE (by 45%; p < 0.01 and 31%; p < 0.001), respectively). Other variables showed no significant post-transfusion changes. In conclusion, transfusion of both pRBCs and PCs was associated with an increased OS; however, transfusing the former may have more severe consequences, since it is associated with the irreversible oxidative/nitrative modifications of plasma proteins.


2016 ◽  
Vol 113 (43) ◽  
pp. E6669-E6678 ◽  
Author(s):  
Mark A. Gregory ◽  
Angelo D’Alessandro ◽  
Francesca Alvarez-Calderon ◽  
Jihye Kim ◽  
Travis Nemkov ◽  
...  

Activating mutations in FMS-like tyrosine kinase 3 (FLT3) are common in acute myeloid leukemia (AML) and drive leukemic cell growth and survival. Although FLT3 inhibitors have shown considerable promise for the treatment of AML, they ultimately fail to achieve long-term remissions as monotherapy. To identify genetic targets that can sensitize AML cells to killing by FLT3 inhibitors, we performed a genome-wide RNA interference (RNAi)-based screen that identified ATM (ataxia telangiectasia mutated) as being synthetic lethal with FLT3 inhibitor therapy. We found that inactivating ATM or its downstream effector glucose 6-phosphate dehydrogenase (G6PD) sensitizes AML cells to FLT3 inhibitor induced apoptosis. Examination of the cellular metabolome showed that FLT3 inhibition by itself causes profound alterations in central carbon metabolism, resulting in impaired production of the antioxidant factor glutathione, which was further impaired by ATM or G6PD inactivation. Moreover, FLT3 inhibition elicited severe mitochondrial oxidative stress that is causative in apoptosis and is exacerbated by ATM/G6PD inhibition. The use of an agent that intensifies mitochondrial oxidative stress in combination with a FLT3 inhibitor augmented elimination of AML cells in vitro and in vivo, revealing a therapeutic strategy for the improved treatment of FLT3 mutated AML.


Cancers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 4698
Author(s):  
Francesco Lanza ◽  
Ali Bazarbachi

Acute myeloid leukemia (AML) is a clonal disorder resulting from acquired somatic mutations in hematopoietic progenitor cells that lead to the dysregulation of differentiation and the proliferation of hematopoietic cells [...]


Author(s):  
Catherine C. Smith ◽  
Neil P. Shah

Overview: Small molecule kinase inhibitors of BCR-ABL in chronic myeloid leukemia (CML) and of FMS-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD) in acute myeloid leukemia (AML) have been successful at achieving remissions in these diseases as monotherapy, but these leukemias do not initially respond in a subset of patients (primary resistance) and they progress in an additional group of patients after an initial response (secondary resistance). Resistance to these agents can be divided into mechanisms that allow reactivation kinase activity and those that bypass reliance on oncogenic signaling mediated by the target kinase. Elucidation of clinical resistance mechanisms to targeted therapies for patients can provide important insights into disease pathogenesis and signaling.


Children ◽  
2020 ◽  
Vol 7 (2) ◽  
pp. 14
Author(s):  
Rebecca Epperly ◽  
Stephen Gottschalk ◽  
Mireya Paulina Velasquez

Outcomes for pediatric patients with acute myeloid leukemia (AML) remain poor, highlighting the need for improved targeted therapies. Building on the success of CD19-directed immune therapy for acute lymphocytic leukemia (ALL), efforts are ongoing to develop similar strategies for AML. Identifying target antigens for AML is challenging because of the high expression overlap in hematopoietic cells and normal tissues. Despite this, CD123 and CD33 antigen targeted therapies, among others, have emerged as promising candidates. In this review we focus on AML-specific T cell engaging bispecific antibodies and chimeric antigen receptor (CAR) T cells. We review antigens being explored for T cell-based immunotherapy in AML, describe the landscape of clinical trials upcoming for bispecific antibodies and CAR T cells, and highlight strategies to overcome additional challenges facing translation of T cell-based immunotherapy for AML.


Sign in / Sign up

Export Citation Format

Share Document