scholarly journals ATM/G6PD-driven redox metabolism promotes FLT3 inhibitor resistance in acute myeloid leukemia

2016 ◽  
Vol 113 (43) ◽  
pp. E6669-E6678 ◽  
Author(s):  
Mark A. Gregory ◽  
Angelo D’Alessandro ◽  
Francesca Alvarez-Calderon ◽  
Jihye Kim ◽  
Travis Nemkov ◽  
...  

Activating mutations in FMS-like tyrosine kinase 3 (FLT3) are common in acute myeloid leukemia (AML) and drive leukemic cell growth and survival. Although FLT3 inhibitors have shown considerable promise for the treatment of AML, they ultimately fail to achieve long-term remissions as monotherapy. To identify genetic targets that can sensitize AML cells to killing by FLT3 inhibitors, we performed a genome-wide RNA interference (RNAi)-based screen that identified ATM (ataxia telangiectasia mutated) as being synthetic lethal with FLT3 inhibitor therapy. We found that inactivating ATM or its downstream effector glucose 6-phosphate dehydrogenase (G6PD) sensitizes AML cells to FLT3 inhibitor induced apoptosis. Examination of the cellular metabolome showed that FLT3 inhibition by itself causes profound alterations in central carbon metabolism, resulting in impaired production of the antioxidant factor glutathione, which was further impaired by ATM or G6PD inactivation. Moreover, FLT3 inhibition elicited severe mitochondrial oxidative stress that is causative in apoptosis and is exacerbated by ATM/G6PD inhibition. The use of an agent that intensifies mitochondrial oxidative stress in combination with a FLT3 inhibitor augmented elimination of AML cells in vitro and in vivo, revealing a therapeutic strategy for the improved treatment of FLT3 mutated AML.

Blood ◽  
2011 ◽  
Vol 117 (12) ◽  
pp. 3286-3293 ◽  
Author(s):  
Takashi Sato ◽  
Xiaochuan Yang ◽  
Steven Knapper ◽  
Paul White ◽  
B. Douglas Smith ◽  
...  

AbstractWe examined in vivo FLT3 inhibition in acute myeloid leukemia patients treated with chemotherapy followed by the FLT3 inhibitor lestaurtinib, comparing newly diagnosed acute myeloid leukemia patients with relapsed patients. Because we noted that in vivo FLT3 inhibition by lestaurtinib was less effective in the relapsed patients compared with the newly diagnosed patients, we investigated whether plasma FLT3 ligand (FL) levels could influence the efficacy of FLT3 inhibition in these patients. After intensive chemotherapy, FL levels rose to a mean of 488 pg/mL on day 15 of induction therapy for newly diagnosed patients, whereas they rose to a mean of 1148 pg/mL in the relapsed patients. FL levels rose even higher with successive courses of chemotherapy, to a mean of 3251 pg/mL after the fourth course. In vitro, exogenous FL at concentrations similar to those observed in patients mitigated FLT3 inhibition and cytotoxicity for each of 5 different FLT3 inhibitors (lestaurtinib, midostaurin, sorafenib, KW-2449, and AC220). The dramatic increase in FL level after chemotherapy represents a possible obstacle to inhibiting FLT3 in this clinical setting. These findings could have important implications regarding the design and outcome of trials of FLT3 inhibitors and furthermore suggest a rationale for targeting FL as a therapeutic strategy.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 35-35 ◽  
Author(s):  
Patrick R. Baldwin ◽  
Shivani Kapoor ◽  
Karthika Natarajan ◽  
Rossana Trotta ◽  
Adriana Tron ◽  
...  

Abstract Internal tandem duplication (ITD) mutations of the receptor tyrosine kinase fms-like tyrosine kinase 3 (FLT3) are present in acute myeloid leukemia (AML) cells in 30% of cases and are associated with high relapse rate and short disease-free survival following both chemotherapy and allogeneic hematopoietic stem cell transplantation. Inhibitors of FLT3 signaling have shown activity in clinical trials in FLT3-ITD AML, but efficacy has generally been limited and transient. Concurrent inhibition of other targets in FLT3-ITD signaling pathways is being explored as an approach to increasing the depth and duration of responses to FLT3 inhibitors. The oncogenic serine/threonine kinase Pim-1 is transcriptionally upregulated downstream of FLT3-ITD and phosphorylates and stabilizes FLT3, thereby promoting FLT3 signaling in a positive feedback loop in cells with FLT3-ITD. Pim kinase inhibitors are in clinical trials. We previously showed that combinations of clinically active Pim kinase and FLT3 inhibitors at pharmacologically relevant concentrations enhance apoptosis and decrease clonogenic growth of FLT3-ITD AML cell lines and primary patient cells in vitro and suppress growth of FLT3-ITD AML cells in vivo, in relation to treatment with FLT3 or Pim inhibitors alone. Here we studied the mechanistic effects of concurrent Pim kinase and FLT3 inhibition, demonstrating a novel mechanism of Mcl-1 downregulation in FLT3-ITD AML cells. Ba/F3-ITD cells, transfected with FLT3-ITD, were cultured with the pan-Pim kinase inhibitor AZD1208 at 1 μM, a concentration chosen based on in vitro and phase I clinical trial data, and/or the FLT3 inhibitor quizartinib at 1 nM, its IC50 concentration, and expression of the anti-apoptotic proteins Mcl-1, Bcl2 and Bcl-xL and the pro-apoptotic proteins BAD/S112 p-BAD, BAK, BAX and Bim was measured by western blot analysis. Mcl-1 expression decreased in a time-dependent manner with AZD1208 and quizartinib co-treatment, but not with treatment with either inhibitor alone, while levels of the other proteins did not change. Mcl-1 downregulation with Pim kinase and FLT3 inhibitor combination treatment was then confirmed in the human FLT3-ITD AML cell lines MV4-11 and MOLM-14. Mcl-1 expression is regulated at multiple levels, and we next sought to determine the mechanism(s) by which it is downregulated by concurrent Pim and FLT3 inhibition. While Mcl-1 protein levels decreased, Mcl-1 mRNA levels did not change, indicating post-transcriptional regulation. Additionally, levels of miR-29b, a negative regulator of Mcl-1 translation,decreased similarly in Ba/F3-ITD cells treated with AZD1208 and quizartinib, compared to quizartinib alone. Polysome profiling showed decreased total mRNA translation, but no selective reduction in Mcl-1 translation. In contrast, the progressive decrease in Mcl-1 protein expression with AZD1208 and quizartinib co-treatment was abrogated by addition of the proteasome inhibitor MG-132, demonstrating that Mcl-1 protein is downregulated by enhanced Mcl-1 proteasomal degradation. This mechanism was further confirmed by demonstration of an increase in ubiquitinated Mcl-1 prior to Mcl-1 downregulation in cells co-treated with AZD1208 and quizartinib, but not with each inhibitor alone or with DMSO control. The deubiquitinase USP9X decreases Mcl-1 ubiquitination and consequent proteasomal degradation, and we found that USP9X expression is downregulated prior to the increase in ubiquitinated Mcl-1 and the subsequent decrease in Mcl-1 protein levels during AZD1208 and quizartinib co-treatment, but was not altered by treatment with either inhibitor alone. In contrast, expression of the ubiquitin E3 ligases Mule/ARF-BP1, SCFβ-TrCP and Trim17, which mediate Mcl ubiquitination, did not change prior to Mcl-1 downregulation. Preclinical studies in our laboratory and others have shown in vitro and in vivo efficacy of combination treatment with Pim kinase and FLT3 inhibitors in FLT3-ITD AML, suggesting clinical promise of this approach. Here we show that, mechanistically, concurrent Pim kinase and FLT3 inhibition causes a post-translational decrease in expression of the anti-apoptotic protein Mcl-1 via enhanced proteasomal degradation, preceded by downregulation of the Mcl-1 deubiquitinase USP9X and an increase in ubiquitinated Mcl-1, a novel mechanism of Mcl-1 downregulation in FLT3-ITD AML cells. Disclosures Tron: AstraZeneca: Employment; AstraZeneca: Employment. Huszar:AstraZeneca: Employment.


Leukemia ◽  
2021 ◽  
Author(s):  
Corinna Spohr ◽  
Teresa Poggio ◽  
Geoffroy Andrieux ◽  
Katharina Schönberger ◽  
Nina Cabezas-Wallscheid ◽  
...  

AbstractInternal tandem duplications (ITD) of the FMS-like tyrosine kinase 3 (FLT3) predict poor prognosis in acute myeloid leukemia (AML) and often co-exist with inactivating DNMT3A mutations. In vitro studies implicated Grb2-associated binder 2 (GAB2) as FLT3-ITD effector. Utilizing a Flt3-ITD knock-in, Dnmt3a haploinsufficient mouse model, we demonstrate that Gab2 is essential for the development of Flt3-ITD driven AML in vivo, as Gab2 deficient mice displayed prolonged survival, presented with attenuated liver and spleen pathology and reduced blast counts. Furthermore, leukemic bone marrow from Gab2 deficient mice exhibited reduced colony-forming unit capacity and increased FLT3 inhibitor sensitivity. Using transcriptomics, we identify the genes encoding for Axl and the Ret co-receptor Gfra2 as targets of the Flt3-ITD/Gab2/Stat5 axis. We propose a pathomechanism in which Gab2 increases signaling of these receptors by inducing their expression and by serving as downstream effector. Thereby, Gab2 promotes AML aggressiveness and drug resistance as it incorporates these receptor tyrosine kinases into the Flt3-ITD signaling network. Consequently, our data identify GAB2 as a promising biomarker and therapeutic target in human AML.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 889-889
Author(s):  
Hassiba Chaib ◽  
Thomas Prebet ◽  
Audrey Restouin ◽  
Remy Castellano ◽  
Sandrine Opi ◽  
...  

Abstract Recent studies have highlighted the importance of epigenetic modifications in the pathogenesis of Acute Myeloid Leukemia (AML). This results have been confirmed by the activity of new drug like DNA demethylating agents and histone deacetylase (HDAC) inhibitors in both in vivo and in vitro studies. Recently, Chaetocin, a natural fungal compound, has been identified as the first specific inhibitor of the histone methyltransferase SU(VAR)3–9 which plays a role in heterochromatin gene silencing. In this study, we decided to evaluate Chaetocin as a therapeutic agent in AML in vitro and to explore the related mechanisms. We show that Chaetocin induce dramatic cell death at nanomolar concentrations in U937 and HL60 (97.2% ± 0.4 and 91.6% ± 9 cell death at 100 nM chaetocin, respectively), and to a lesser extend in K562 (67.3% ± 1.6 cell death at 100 nM chaetocin), cell cultures. Cell death occurred at 24 h incubation time which correlated with induction of apoptosis as assessed by Annexin V/7-AAD staining and activation of downstream executioner caspase-3/7. Using transcription low-density array and quantitative RT- PCR, Chaetocin was showed to up-regulate gene transcription such as of the cell cycle inhibitor p21/WAF1 consistent with a role for the targeted SU(VAR)3–9 in heterochromatin gene silencing. In agreement with the recent report of Chaetocin being a promising new antimyeloma agent acting via imposition of oxidative stress, intracellular levels of oxidative species were increased in Chaetocin treated U937 cells in a time- and dose-dependent manner that correlated with induction of cell death. Furthermore, incubation of cells with N-acetyl cysteine, a cell-permeable precursor of intracellular glutathione reductant, prevented chaetocin-induced accumulation of oxidative species, transcription of selected genes (e.g. p21/WAF1), activation of caspase-3, and cell death. Finally, Chaetocin was found to increase the antileukemia activity of HDAC inhibitors and Aracytin, and thus appears as a promising agent for further study as a potential anti-AML therapeutic. Preliminary results obtained in vivo in xenograft models and ex vivo, using blasts of a panel of patients with AML, will be presented.


2019 ◽  
Vol 96 (5) ◽  
pp. 589-599
Author(s):  
Zhi-Xing Cao ◽  
Yi Wen ◽  
Jun-Lin He ◽  
Shen-Zhen Huang ◽  
Fei Gao ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3385
Author(s):  
Axel H. Schönthal ◽  
Steve Swenson ◽  
Radu O. Minea ◽  
Hye Na Kim ◽  
Heeyeon Cho ◽  
...  

Despite progress in the treatment of acute myeloid leukemia (AML), the clinical outcome remains suboptimal and many patients are still dying from this disease. First-line treatment consists of chemotherapy, which typically includes cytarabine (AraC), either alone or in combination with anthracyclines, but drug resistance can develop and significantly worsen prognosis. Better treatments are needed. We are developing a novel anticancer compound, NEO212, that was created by covalent conjugation of two different molecules with already established anticancer activity, the alkylating agent temozolomide (TMZ) and the natural monoterpene perillyl alcohol (POH). We investigated the anticancer activity of NEO212 in several in vitro and in vivo models of AML. Human HL60 and U937 AML cell lines, as well as different AraC-resistant AML cell lines, were treated with NEO212 and effects on cell proliferation, cell cycle, and cell death were investigated. Mice with implanted AraC-sensitive or AraC-resistant AML cells were dosed with oral NEO212, and animal survival was monitored. Our in vitro experiments show that treatment of cells with NEO212 results in growth inhibition via potent G2 arrest, which is followed by apoptotic cell death. Intriguingly, NEO212 was equally potent in highly AraC-resistant cells. In vivo, NEO212 treatment strikingly extended survival of AML mice and the majority of treated mice continued to thrive and survive without any signs of illness. At the same time, we were unable to detect toxic side effects of NEO212 treatment. All in all, the absence of side effects, combined with striking therapeutic activity even in an AraC-resistant context, suggests that NEO212 should be developed further toward clinical testing.


2018 ◽  
Vol 51 (2) ◽  
pp. 886-896 ◽  
Author(s):  
Xiaoya Dong ◽  
Zhigang Fang ◽  
Mingxue Yu ◽  
Ling Zhang ◽  
Ruozhi Xiao ◽  
...  

Background/Aims: Among different molecular candidates, there is growing data to support that long noncoding RNAs (lncRNAs) play a significant role in acute myeloid leukemia (AML). HOXA-AS2 is significantly overexpressed in a variety of tumors and associated with anti-cancer drug resistance, however, little is known regarding the expression and function of HOXA-AS2 in the chemoresistance of AML. In this study, we aimed to determine the role and molecular mechanism of HOXA-AS2 in adriamycin-based chemotherapy resistance in AML cells. Methods: Quantitative real-time PCR was used to detect HOXA-AS2 expression in the BM samples and ADR cell lines, U/A and T/A cells. Furthermore, the effects of HOXA-AS2 silencing on cell proliferation and apoptosis were assessed in vitro by CCK8 and flow cytometry, and on tumor growth in vivo. Furthermore, bioinformatics online programs predicted and luciferase reporter assay were used to validate the association of HOXA-AS2 and miR-520c-3p in AML. Results: In this study, we showed that HOXA-AS2 is significantly upregulated in BM samples from AML patients after treatment with adriamycin-based chemotherapy and in U/A and T/A cells. Knockdown of HOXA-AS2 inhibited ADR cell proliferation in vitro and in vivo and promoted apoptosis. Bioinformatics online programs predicted that HOXA-AS2 sponge miR-520c-3p at 3’-UTR with complementary binding sites, which was validated using luciferase reporter assay and anti-Ago2 RIP assay. HOXA-AS2 could negatively regulate the expression of miR-520c-3p in ADR cells. S100A4 was predicted as a downstream target of miR-520c-3p, which was confirmed by luciferase reporter assay. Conclusion: Our results suggest that HOXA-AS2 plays an important role in the resistance of AML cells to adriamycin. Thus, HOXA-AS2 may represent a therapeutic target for overcoming resistance to adriamycin-based chemotherapy in AML.


Sign in / Sign up

Export Citation Format

Share Document