Bias Correction of GCM Data Using Quantile Mapping Technique

Author(s):  
Shweta Panjwani ◽  
S. Naresh Kumar ◽  
Laxmi Ahuja
Author(s):  
Weijia Qian ◽  
Howard H. Chang

Health impact assessments of future environmental exposures are routinely conducted to quantify population burdens associated with the changing climate. It is well-recognized that simulations from climate models need to be bias-corrected against observations to estimate future exposures. Quantile mapping (QM) is a technique that has gained popularity in climate science because of its focus on bias-correcting the entire exposure distribution. Even though improved bias-correction at the extreme tails of exposure may be particularly important for estimating health burdens, the application of QM in health impact projection has been limited. In this paper we describe and apply five QM methods to estimate excess emergency department (ED) visits due to projected changes in warm-season minimum temperature in Atlanta, USA. We utilized temperature projections from an ensemble of regional climate models in the North American-Coordinated Regional Climate Downscaling Experiment (NA-CORDEX). Across QM methods, we estimated consistent increase in ED visits across climate model ensemble under RCP 8.5 during the period 2050 to 2099. We found that QM methods can significantly reduce between-model variation in health impact projections (50–70% decreases in between-model standard deviation). Particularly, the quantile delta mapping approach had the largest reduction and is recommended also because of its ability to preserve model-projected absolute temporal changes in quantiles.


2021 ◽  
Vol 60 (4) ◽  
pp. 455-475
Author(s):  
Maike F. Holthuijzen ◽  
Brian Beckage ◽  
Patrick J. Clemins ◽  
Dave Higdon ◽  
Jonathan M. Winter

AbstractHigh-resolution, bias-corrected climate data are necessary for climate impact studies at local scales. Gridded historical data are convenient for bias correction but may contain biases resulting from interpolation. Long-term, quality-controlled station data are generally superior climatological measurements, but because the distribution of climate stations is irregular, station data are challenging to incorporate into downscaling and bias-correction approaches. Here, we compared six novel methods for constructing full-coverage, high-resolution, bias-corrected climate products using daily maximum temperature simulations from a regional climate model (RCM). Only station data were used for bias correction. We quantified performance of the six methods with the root-mean-square-error (RMSE) and Perkins skill score (PSS) and used two ANOVA models to analyze how performance varied among methods. We validated the six methods using two calibration periods of observed data (1980–89 and 1980–2014) and two testing sets of RCM data (1990–2014 and 1980–2014). RMSE for all methods varied throughout the year and was larger in cold months, whereas PSS was more consistent. Quantile-mapping bias-correction techniques substantially improved PSS, while simple linear transfer functions performed best in improving RMSE. For the 1980–89 calibration period, simple quantile-mapping techniques outperformed empirical quantile mapping (EQM) in improving PSS. When calibration and testing time periods were equivalent, EQM resulted in the largest improvements in PSS. No one method performed best in both RMSE and PSS. Our results indicate that simple quantile-mapping techniques are less prone to overfitting than EQM and are suitable for processing future climate model output, whereas EQM is ideal for bias correcting historical climate model output.


2021 ◽  
Author(s):  
Ignacio Martin Santos ◽  
Mathew Herrnegger ◽  
Hubert Holzmann

<p>The skill of seasonal hydro-meteorological forecasts with a lead time of up to six months is currently limited, since they frequently exhibit random but also systematic errors. Bias correction algorithms can be applied and provide an effective approach in removing historical biases relative to observations. Systematic errors in hydrology model outputs can be consequence of different sources: i) errors in meteorological data used as input data, ii) errors in the hydrological model response to climate forcings, iii) unknown/unobservable internal states and iv) errors in the model parameterizations, also due to unresolved subgrid scale variability.</p><p>Normally, bias correction techniques are used to correct meteorological, e.g. precipitation data, provided by climate models. Only few studies are available applying these techniques to hydrological model outputs. Standard bias correction techniques used in literature can be classified into scaling-, and distributional-based methods. The former consists of using multiplicative or additive scaling factors to correct the modeled simulations, while the later methods are quantile mapping techniques that fit the distribution of the simulation to fit to the observations. In this study, the impact of different bias correction techniques on the seasonal discharge forecasts skill is assessed.</p><p>As a case study, a seasonal discharge forecasting system developed for the Danube basin upstream of Vienna, is used. The studied basin covers an area of around 100 000 km<sup>2</sup> and is subdivided in 65 subbasins, 55 of them gauged with a long historical record of observed discharge. The forecast system uses the calibrated hydrological model, COSERO, which is fed with an ensemble of seasonal temperature and precipitation forecasts. The output of the model provides an ensemble of seasonal discharge forecasts for each of the (gauged) subbasins. Seasonal meteorological forecasts for the past (hindcast), together with historical discharge observations, allow to assess the quality of the seasonal discharge forecasting system, also including the effects of different bias correction methods. The corrections applied to the discharge simulations allow to eliminate potential systematic errors between the modeled and observed values.</p><p>Our findings generally suggest that the quality of the seasonal forecasts improve when applying bias correction. Compared to simpler methods, which use additive or multiplicative scaling factors, quantile mapping techniques tend to be more appropriate in removing errors in the ensemble seasonal forecasts.</p>


Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 482 ◽  
Author(s):  
Maikel Mendez ◽  
Ben Maathuis ◽  
David Hein-Griggs ◽  
Luis-Fernando Alvarado-Gamboa

Six bias correction (BC) methods; delta-method (DT), linear scaling (LS), power transformation of precipitation (PTR), empirical quantile mapping (EQM), gamma quantile mapping (GQM) and gamma-pareto quantile mapping (GPQM) were applied to adjust the biases of historical monthly precipitation outputs from five General Circulation Models (GCMs) dynamically downscaled by two Regional Climate Models (RCMs) for a total of seven different GCM-RCM pairs over Costa Rica. High-resolution gridded precipitation observations were used for the control period 1951–1980 and validated over the period 1981–1995. Results show that considerable biases exist between uncorrected GCM-RCM outputs and observations, which largely depend on GCM-RCM pair, seasonality, climatic region and spatial resolution. After the application of bias correction, substantial biases reductions and comparable performances among most BC methods were observed for most GCM-RCM pairs; with EQM and DT marginally outperforming the remaining methods. Consequently, EQM and DT were selectively applied to correct the biases of precipitation projections from each individual GCM-RCM pair for a near-future (2011–2040), mid-future (2041–2070) and far-future (2071–2100) period under Representative Concentration Pathways (RCPs) 2.6, 4.5 and 8.5 using the control period 1961–1990. Results from the bias-corrected future ensemble-mean anticipate a marked decreasing trend in precipitation from near to far-future periods during the dry season (December, January, February (DJF) and March, April, May (MAM)) for RCP4.5 and 8.5; with pronounced drier conditions for those climatic regions draining towards the Pacific Ocean. In contrast, mostly wetter conditions are expected during the dry season under RCP2.6, particularly for the Caribbean region. In most of the country, the greatest decrease in precipitation is projected at the beginning of the rainy season (June, July, August (JJA)) for the far-future period under RCP8.5, except for the Caribbean region where mostly wetter conditions are anticipated. Regardless of future period, slight increases in precipitation with higher radiative forcing are expected for SON excluding the Caribbean region, where precipitation is likely to increase with increasing radiative forcing and future period. This study demonstrates that bias correction should be considered before direct application of GCM-RCM precipitation projections over complex territories such as Costa Rica.


Author(s):  
Maedeh Enayati ◽  
Omid Bozorg-Haddad ◽  
Javad Bazrafshan ◽  
Somayeh Hejabi ◽  
Xuefeng Chu

Abstract This study aims to conduct a thorough investigation to compare the abilities of QM techniques as a bias correction method for the raw outputs from GCM/RCM combinations. The Karkheh River basin in Iran was selected as a case study, due to its diverse topographic features, to test the performances of the bias correction methods under different conditions. The outputs of two GCM/RCM combinations (ICHEC and NOAA-ESM) were acquired from the CORDEX dataset for this study. The results indicated that the performances of the QMs varied, depending on the transformation functions, parameter sets, and topographic conditions. In some cases, the QMs' adjustments even made the GCM/RCM combinations' raw outputs worse. The result of this study suggested that apart from DIST, PTF:scale, and SSPLIN, the rest of the considered QM methods can provide relatively improved results for both rainfall and temperature variables. It should be noted that, according to the results obtained from the diverse topographic conditions of the sub-basins, the empirical quantiles (QUANT) and robust empirical quantiles (RQUANT) methods proved to be excellent options to correct the bias of rainfall data, while all bias correction methods, with the notable exceptions of performed PTF:scale and SSPLIN, performed relatively well for the temperature variable.


Climate ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 18 ◽  
Author(s):  
Beáta Szabó-Takács ◽  
Aleš Farda ◽  
Petr Skalák ◽  
Jan Meitner

Our goal was to investigate the influence of bias correction methods on climate simulations over the European domain. We calculated the Köppen−Geiger climate classification using five individual regional climate models (RCM) of the ENSEMBLES project in the European domain during the period 1961−1990. The simulated precipitation and temperature data were corrected using the European daily high-resolution gridded dataset (E-OBS) observed data by five methods: (i) the empirical quantile mapping of precipitation and temperature, (ii) the quantile mapping of precipitation and temperature based on gamma and Generalized Pareto Distribution of precipitation, (iii) local intensity scaling, (iv) the power transformation of precipitation and (v) the variance scaling of temperature bias corrections. The individual bias correction methods had a significant effect on the climate classification, but the degree of this effect varied among the RCMs. Our results on the performance of bias correction differ from previous results described in the literature where these corrections were implemented over river catchments. We conclude that the effect of bias correction may depend on the region of model domain. These results suggest that distribution free bias correction approaches are the most suitable for large domain sizes such as the pan-European domain.


2017 ◽  
Vol 8 (3) ◽  
pp. 889-900 ◽  
Author(s):  
Manolis G. Grillakis ◽  
Aristeidis G. Koutroulis ◽  
Ioannis N. Daliakopoulos ◽  
Ioannis K. Tsanis

Abstract. Bias correction of climate variables is a standard practice in climate change impact (CCI) studies. Various methodologies have been developed within the framework of quantile mapping. However, it is well known that quantile mapping may significantly modify the long-term statistics due to the time dependency of the temperature bias. Here, a method to overcome this issue without compromising the day-to-day correction statistics is presented. The methodology separates the modeled temperature signal into a normalized and a residual component relative to the modeled reference period climatology, in order to adjust the biases only for the former and preserve the signal of the later. The results show that this method allows for the preservation of the originally modeled long-term signal in the mean, the standard deviation and higher and lower percentiles of temperature. To illustrate the improvements, the methodology is tested on daily time series obtained from five Euro CORDEX regional climate models (RCMs).


Sign in / Sign up

Export Citation Format

Share Document