Environmental Interaction and Impact on the Life Span of Stem Cells

Author(s):  
Anil Kumar ◽  
Krishan Gopal Jain ◽  
Vivek Arora
2018 ◽  
Vol 64 (4) ◽  
pp. 522-527
Author(s):  
Aleksey Shutko ◽  
Viktor Mus

Individual parameters of circulating hemopoietic stem cells (HSC) lymphoid origin were measured by cytofluorometry before treatment of patients with metastatic non-small cell lung cancer and were retrospectively compared with individual life span's (LS). The possibility of poor prognosis of treatment's results (LS


Science ◽  
2002 ◽  
Vol 295 (5554) ◽  
pp. 502-505 ◽  
Author(s):  
N. Arantes-Oliveira

Blood ◽  
1987 ◽  
Vol 69 (3) ◽  
pp. 773-777 ◽  
Author(s):  
DE Harrison ◽  
C Lerner ◽  
PC Hoppe ◽  
GA Carlson ◽  
D Alling

Abstract The possibility has been repeatedly raised that erythropoiesis results from clonal succession--the differentiation of one or a very small number of the most primitive stem cells that are sequentially activated to proliferate forming clones of differentiated cells and then eventually decline, to be replaced by new stem cell clones. We studied this possibility in chimeric mice made by combining embryos from two different strains so that they would have two distinct stem cell populations, each of which produces a different hemoglobin type (d and s). These were compared with F1 hybrids in which every stem cell produces both types. We measured the percentage of type d in seven to ten serial samples of circulating reticulocytes taken at three- to seven-day intervals and found that the variability in percent of this hemoglobin was only slightly higher in the chimeric mice than in F1 controls; SD ranged from 2.7% to 5.5% in the chimeric mice and from 3.4% to 3.9% in the controls. Using the binomial formula, the numbers of new clones formed during the reticulocyte life span, approximately three days, ranged from 33 to 118 in the individual chimeric mice. However, these numbers are underestimates because estimated numbers of clones depend inversely on variabilities, and the calculations did not exclude the contribution of experimental error to the overall variability. Total percentages of type d hemoglobin were also measured in seven to nine successive serial samples at 60- to 136-day intervals. These gave mean values similar to measures of newly synthesized hemoglobin in the same mice, but SD were larger, ranging from 5.3% to 8.4%. This reflects experimental error, both because of excess day-to- day variability found in this type of measurement and because there could not be fewer primitive stem cells activated to form clones of erythrocytes during the 45-day erythrocyte life span than during the three-day life span of reticulocytes. Since most and maybe all of the variation between successive samples in the same chimeric mouse appear to result from experimental error, many or even all of the primitive stem cells may simultaneously contribute to erythropoiesis.


Blood ◽  
1987 ◽  
Vol 69 (3) ◽  
pp. 773-777 ◽  
Author(s):  
DE Harrison ◽  
C Lerner ◽  
PC Hoppe ◽  
GA Carlson ◽  
D Alling

The possibility has been repeatedly raised that erythropoiesis results from clonal succession--the differentiation of one or a very small number of the most primitive stem cells that are sequentially activated to proliferate forming clones of differentiated cells and then eventually decline, to be replaced by new stem cell clones. We studied this possibility in chimeric mice made by combining embryos from two different strains so that they would have two distinct stem cell populations, each of which produces a different hemoglobin type (d and s). These were compared with F1 hybrids in which every stem cell produces both types. We measured the percentage of type d in seven to ten serial samples of circulating reticulocytes taken at three- to seven-day intervals and found that the variability in percent of this hemoglobin was only slightly higher in the chimeric mice than in F1 controls; SD ranged from 2.7% to 5.5% in the chimeric mice and from 3.4% to 3.9% in the controls. Using the binomial formula, the numbers of new clones formed during the reticulocyte life span, approximately three days, ranged from 33 to 118 in the individual chimeric mice. However, these numbers are underestimates because estimated numbers of clones depend inversely on variabilities, and the calculations did not exclude the contribution of experimental error to the overall variability. Total percentages of type d hemoglobin were also measured in seven to nine successive serial samples at 60- to 136-day intervals. These gave mean values similar to measures of newly synthesized hemoglobin in the same mice, but SD were larger, ranging from 5.3% to 8.4%. This reflects experimental error, both because of excess day-to- day variability found in this type of measurement and because there could not be fewer primitive stem cells activated to form clones of erythrocytes during the 45-day erythrocyte life span than during the three-day life span of reticulocytes. Since most and maybe all of the variation between successive samples in the same chimeric mouse appear to result from experimental error, many or even all of the primitive stem cells may simultaneously contribute to erythropoiesis.


2005 ◽  
Vol 16 (3) ◽  
pp. 1491-1499 ◽  
Author(s):  
Masanori Terai ◽  
Taro Uyama ◽  
Tadashi Sugiki ◽  
Xiao-Kang Li ◽  
Akihiro Umezawa ◽  
...  

Human umbilical cord blood-derived mesenchymal stem cells (UCBMSCs) are expected to serve as an excellent alternative to bone marrow-derived human mesenchymal stem cells. However, it is difficult to study them because of their limited life span. To overcome this problem, we attempted to produce a strain of UCBMSCs with a long life span and to investigate whether the strain could maintain phenotypes in vitro. UCBMSCs were infected with retrovirus carrying the human telomerase reverse transcriptase (hTERT) to prolong their life span. The UCBMSCs underwent 30 population doublings (PDs) and stopped dividing at PD 37. The UCBMSCs newly established with hTERT (UCBTERTs) proliferated for >120 PDs. The p16INK4a/RB braking pathway leading to senescence can be inhibited by introduction of Bmi-1, a polycomb-group gene, and human papillomavirus type 16 E7, but the extension of the life span of the UCBMSCs with hTERT did not require inhibition of the p16INK4a/RB pathway. The characteristics of the UCBTERTs remained unchanged during the prolongation of life span. UCBTERTs provide a powerful model for further study of cellular senescence and for future application to cell-based therapy by using umbilical cord blood cells.


2004 ◽  
Vol 13 (2) ◽  
pp. 93-101 ◽  
Author(s):  
Mitchel Seruya ◽  
Anup Shah ◽  
Dawn Pedrotty ◽  
Tracey Du Laney ◽  
Ryan Melgiri ◽  
...  

2007 ◽  
Vol 30 (4) ◽  
pp. 43
Author(s):  
D. Wile

The desire to extend human lifespan has spurred scientific and philosophical interest back to the earliest recorded piece of human literature, the Epic of Gilgamesh, which documents the quest of a mythical king to become immortal. In the intervening years between then and now, and particularly in the last century, human lifespan has increased dramatically. Though it is commonly held that there is an upper biological limit to human lifespan, there are some who believe its recent meteoric rise can continue indefinitely. The story of human lifespan has two largely separate prongs: that of the important advances in sanitation, agriculture and medicine that have effected the greatest change in our life expectancy, and the recurring myth, legend and popular beliefs surrounding greatly advanced or eternal human life. In recent years, the myth and science of life expectancy have coalesced, creating a core group of people who believe that immortality is a technically achievable goal. Such claims have muddied the concept of aging such that it is now commonly described as both a disease process and a fundamental part of life. Hackler C. Extending the life span: Mythic desires and modern dangers. HEC Forum, 2006; 16:182-196. Holliday R. Aging is no longer an unsolved problem in biology. Ann. N.Y. Acad. Sci. 2006; 1067:1-9. Rando TA. Stem cells, ageing and the quest for immortality. Nature 2006; 441:1080-1086.


2018 ◽  
Vol 5 (4) ◽  
pp. 31 ◽  
Author(s):  
Maryam Samareh Salavati Pour ◽  
Fatemeh Hoseinpour Kasgari ◽  
Alireza Farsinejad ◽  
Ahmad Fatemi ◽  
Roohollah Mirzaee Khalilabadi

Introduction: Mesenchymal stem cells (MSCs) are widely studied due to their self- renewal potential and capacity to differentiate into multiple tissues. However, they have a limited life span of several divisions in vitro, which alters various cellular characteristics and reduces their application. Aim: We evaluated the effect of platelet-derived microparticles on gene expression of hTERT, one of the main factors involved in aging and cell longevity. Materials and methods: Umbilical cord MSCs were used for this study. Cells were characterized by evaluating morphology via inverted microscope and identifying associated surface markers using flow cytometry. Platelet-derived microparticles were prepared by centrifuging platelet bags at varying speeds, and their concen- trations were determined by Bradford assay. At 30% confluency, MSCs were treated with 50 μg/mL of microparticles for five days. Then, RNA was extracted and cDNA was synthesized. Quantitative expression of hTERT was assessed using real-time polymerase chain reaction (PCR). Results: Fibroblast-like cells were isolated from umbilical cord tissue and MSCs were identified by the presence of mesenchymal surface markers via flow cytometry. Real- time PCR showed that gene expression of hTERT increased by more than three times when treated with platelet-derived microparticles, in comparison to expression of the control group. Conclusion: We concluded that platelet-derived microparticles may be a potentially safe and effective method to increase hTERT gene expression in MSCs, ultimately prolonging their life span in vitro. 


Sign in / Sign up

Export Citation Format

Share Document