scholarly journals Neural Network Based Deep Transfer Learning for Cross-Domain Dependency Parsing

Author(s):  
Zhentao Xia ◽  
Likai Wang ◽  
Weiguang Qu ◽  
Junsheng Zhou ◽  
Yanhui Gu
Author(s):  
Shu Jiang ◽  
Zuchao Li ◽  
Hai Zhao ◽  
Bao-Liang Lu ◽  
Rui Wang

In recent years, the research on dependency parsing focuses on improving the accuracy of the domain-specific (in-domain) test datasets and has made remarkable progress. However, there are innumerable scenarios in the real world that are not covered by the dataset, namely, the out-of-domain dataset. As a result, parsers that perform well on the in-domain data usually suffer from significant performance degradation on the out-of-domain data. Therefore, to adapt the existing in-domain parsers with high performance to a new domain scenario, cross-domain transfer learning methods are essential to solve the domain problem in parsing. This paper examines two scenarios for cross-domain transfer learning: semi-supervised and unsupervised cross-domain transfer learning. Specifically, we adopt a pre-trained language model BERT for training on the source domain (in-domain) data at the subword level and introduce self-training methods varied from tri-training for these two scenarios. The evaluation results on the NLPCC-2019 shared task and universal dependency parsing task indicate the effectiveness of the adopted approaches on cross-domain transfer learning and show the potential of self-learning to cross-lingual transfer learning.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Shanshan Dong ◽  
Chang Liu

Sentiment classification for financial texts is of great importance for predicting stock markets and financial crises. At present, with the popularity of applications in the field of natural language processing (NLP) adopting deep learning, the application of automatic text classification and text-based sentiment classification has become more and more extensive. However, in the field of financial text-based sentiment classification, due to a lack of labeled samples, such applications are limited. A domain-adaptation-based financial text sentiment classification method is proposed in this paper, which can adopt source domain (SD) text data with sentiment labels and a large amount of unlabeled target domain (TD) financial text data as training samples for the proposed neural network. The proposed method is a cross-domain transfer-learning-based method. The domain classification subnetwork is added to the original neural network, and the domain classification loss function is also added to the original training loss function. Therefore, the network can simultaneously adapt to the target domain and then accomplish the classification task. The experiment of the proposed sentiment classification transfer learning method is carried out through an open-source dataset. The proposed method in this paper uses the reviews of Amazon Books, DVDs, electronics, and kitchen appliances as the source domain for cross-domain learning, and the classification accuracy rates can reach 65.0%, 61.2%, 61.6%, and 66.3%, respectively. Compared with nontransfer learning, the classification accuracy rate has improved by 11.0%, 7.6%, 11.4%, and 13.4%, respectively.


Information ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 162 ◽  
Author(s):  
Jiana Meng ◽  
Yingchun Long ◽  
Yuhai Yu ◽  
Dandan Zhao ◽  
Shuang Liu

Transfer learning is one of the popular methods for solving the problem that the models built on the source domain cannot be directly applied to the target domain in the cross-domain sentiment classification. This paper proposes a transfer learning method based on the multi-layer convolutional neural network (CNN). Interestingly, we construct a convolutional neural network model to extract features from the source domain and share the weights in the convolutional layer and the pooling layer between the source and target domain samples. Next, we fine-tune the weights in the last layer, named the fully connected layer, and transfer the models from the source domain to the target domain. Comparing with the classical transfer learning methods, the method proposed in this paper does not need to retrain the network for the target domain. The experimental evaluation of the cross-domain data set shows that the proposed method achieves a relatively good performance.


2019 ◽  
Author(s):  
Qi Yuan ◽  
Alejandro Santana-Bonilla ◽  
Martijn Zwijnenburg ◽  
Kim Jelfs

<p>The chemical space for novel electronic donor-acceptor oligomers with targeted properties was explored using deep generative models and transfer learning. A General Recurrent Neural Network model was trained from the ChEMBL database to generate chemically valid SMILES strings. The parameters of the General Recurrent Neural Network were fine-tuned via transfer learning using the electronic donor-acceptor database from the Computational Material Repository to generate novel donor-acceptor oligomers. Six different transfer learning models were developed with different subsets of the donor-acceptor database as training sets. We concluded that electronic properties such as HOMO-LUMO gaps and dipole moments of the training sets can be learned using the SMILES representation with deep generative models, and that the chemical space of the training sets can be efficiently explored. This approach identified approximately 1700 new molecules that have promising electronic properties (HOMO-LUMO gap <2 eV and dipole moment <2 Debye), 6-times more than in the original database. Amongst the molecular transformations, the deep generative model has learned how to produce novel molecules by trading off between selected atomic substitutions (such as halogenation or methylation) and molecular features such as the spatial extension of the oligomer. The method can be extended as a plausible source of new chemical combinations to effectively explore the chemical space for targeted properties.</p>


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Young-Gon Kim ◽  
Sungchul Kim ◽  
Cristina Eunbee Cho ◽  
In Hye Song ◽  
Hee Jin Lee ◽  
...  

AbstractFast and accurate confirmation of metastasis on the frozen tissue section of intraoperative sentinel lymph node biopsy is an essential tool for critical surgical decisions. However, accurate diagnosis by pathologists is difficult within the time limitations. Training a robust and accurate deep learning model is also difficult owing to the limited number of frozen datasets with high quality labels. To overcome these issues, we validated the effectiveness of transfer learning from CAMELYON16 to improve performance of the convolutional neural network (CNN)-based classification model on our frozen dataset (N = 297) from Asan Medical Center (AMC). Among the 297 whole slide images (WSIs), 157 and 40 WSIs were used to train deep learning models with different dataset ratios at 2, 4, 8, 20, 40, and 100%. The remaining, i.e., 100 WSIs, were used to validate model performance in terms of patch- and slide-level classification. An additional 228 WSIs from Seoul National University Bundang Hospital (SNUBH) were used as an external validation. Three initial weights, i.e., scratch-based (random initialization), ImageNet-based, and CAMELYON16-based models were used to validate their effectiveness in external validation. In the patch-level classification results on the AMC dataset, CAMELYON16-based models trained with a small dataset (up to 40%, i.e., 62 WSIs) showed a significantly higher area under the curve (AUC) of 0.929 than those of the scratch- and ImageNet-based models at 0.897 and 0.919, respectively, while CAMELYON16-based and ImageNet-based models trained with 100% of the training dataset showed comparable AUCs at 0.944 and 0.943, respectively. For the external validation, CAMELYON16-based models showed higher AUCs than those of the scratch- and ImageNet-based models. Model performance for slide feasibility of the transfer learning to enhance model performance was validated in the case of frozen section datasets with limited numbers.


Sign in / Sign up

Export Citation Format

Share Document