Three-Dimensional Reconstruction of Leaked Gas Cloud Image Based on Computed Tomography Processing of Multiple Optical Paths Infrared Measurement Data

Author(s):  
M. Uchida ◽  
D. Shiozawa ◽  
T. Sakagami ◽  
S. Kubo
2021 ◽  
Vol 8 (1) ◽  
pp. 33
Author(s):  
Daiki Shiozawa ◽  
Masaki Uchida ◽  
Yuki Ogawa ◽  
Takahide Sakagami ◽  
Shiro Kubo

Currently, gas leakage source detection is conducted by the human senses and experience. The development of a remote gas leakage source detection system is required. In this research, an infrared camera was used to detect gas leakage. The gas can be detected by the absorption of infrared rays by the gas and the infrared rays emitted from the gas itself. A three-dimensional reconstruction of a leaked gas cloud was performed to identify the gas leakage source and the flow direction of the gas. The so-called four-dimensional reconstruction of the leaked gas cloud, i.e., reconstruction of three-dimensional images of a gas cloud varying with time, was successfully performed by applying the ART (Algebraic Reconstruction Techniques) method to the multiple optical paths of infrared measurement.


1997 ◽  
Vol 82 (3) ◽  
pp. 998-1002 ◽  
Author(s):  
Nicolas Pettiaux ◽  
Marie Cassart ◽  
Manuel Paiva ◽  
Marc Estenne

Pettiaux, Nicolas, Marie Cassart, Manuel Paiva, and Marc Estenne. Three-dimensional reconstruction of human diaphragm with the use of spiral computed tomography. J. Appl. Physiol. 82(3): 998–1002, 1997.—We developed a technique of diaphragm imaging by using spiral computed tomography, and we studied four normal subjects who had been previously investigated with magnetic resonance imaging (A. P. Gauthier, S. Verbanck, M. Estenne, C. Segebarth, P. T. Macklem, and M. Paiva. J. Appl. Physiol. 76: 495–506, 1994). One acquisition of 15- to 25-s duration was performed at residual volume, functional residual capacity, functional residual capacity plus one-half inspiratory capacity, and total lung capacity with the subject holding his breath and relaxing. From these acquisitions, 20 coronal and 30 sagittal images were reconstructed at each lung volume; on each image, diaphragm contour in the zone of apposition and in the dome was digitized with the software Osiris, and the digitized silhouettes were used for three-dimensional reconstruction with Matlab. Values of length and surface area for the diaphragm, the dome, and the zone of apposition were very similar to those obtained with magnetic resonance imaging. We conclude that satisfactory three-dimensional reconstruction of the in vivo diaphragm may be obtained with spiral computed tomography, allowing accurate measurements of muscle length, surface area, and shape.


2019 ◽  
Author(s):  
Naoki Sunaguchi ◽  
Daisuke Shimao ◽  
Shu Ichihara ◽  
Kensaku Mori ◽  
Tetsuya Yuasa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document